Разное

Разведение рыбы в узв: УЗВ ферма – бизнес-план разведения и выращивания рыбы

14.04.2018

Содержание

Выращивание рыбы в УЗВ

29.09.2019

Начиная с середины XX века использование установок замкнутого водоснабжения (УЗВ) в промышленном рыбоводстве – самая перспективная мировая тенденция.
При выращивании в УЗВ все параметры технологического процесса (кондиционирование воды, кормление, контроль и т. п.) совершаются при помощи автоматизированных устройств, действие которых может программироваться, а влияние природных факторов на ход технологического процесса становится минимальным.

Создание и эксплуатация современной установки замкнутого типа для выращивания ценных видов рыб – довольно расходные меры. Поэтому основным составляющим успешной в экономическом отношении работы является использование максимально ценных видов рыб, цена на конечную продукцию которых позволит окупить расходы на строительство установки и ее функционирование. Чем быстрее будет расти рыба, тем меньшее влияние на ее цену окажут эксплуатационные расходы, и, соответственно, ниже будет ее себестоимость.

Использование замкнутых рыбоводческих установок позволяет избежать сезонных колебаний температуры и непредусмотренных скачков расходов воды. Это достигается при помощи технических средств, оснащения и приборов автоматического управления. Как правило, выращивание рыбы в замкнутых установках проводится при оптимальной температуре воды. Для карпа, осетров, угря обычно устанавливается температура воды +24°С, что обеспечивает 8760 градусо-дней в течение года. Срок получения товарной рыбы в таких установках значительно снижается. Таким образом, к примеру, товарного карпа, весом 425 г, получают в замкнутых установках за 280 суток, а осетров, весом 1 кг, – за 365 суток.

Рассмотрим основные пункты, которые помогут обеспечить правильное функционирование и результативность использования УЗВ.
 

1. Размер установки

  
Товарные рыбоводческие хозяйства с использованием замкнутых установок строятся по принципу модульного построения. Каждый модель являет собой изолированную замкнутую систему, не связанную с другими модулями, что гарантирует нераспространение болезней рыб в случае их заражения в какой-то одной из установок и минимизирует потери в случае технических аварий.

Продуктивность такого модуля обычно составляет около 20 т рыбы в год.

Считается, что 15-20 т рыбы в год – это продуктивность установки, управляемой одним-двумя работниками (семейная ферма). Ферма продуктивностью 40 т будет состоять уже из двух модулей и т. д. размер фермы определяется экономической целесообразностью, что непосредственно связано с конкретными факторами: емкость рынка, цена конкурентов, налогообложение, расходы на энергоресурсы и прочее.

Выбор формы и размера бассейнов для рыбоводческой установки определяется чаще всего потребностями выращиваемого вида рыб. Некоторые из предлагаемых на рынке установок имеют один бассейн, в котором размещают садки, содержащие рыбу разных размеров.

Для рыб, обитающих в толще воды (форель, карп) используются глубокие объемные бассейны – силосы – прямоугольные бассейны с конусным дном, круглые и квадратные с закругленными углами, глубиной больше 1-1,5 м.

Удельное содержание воды в таких бассейнах составляет более 1,5 м32. Замкнутые рыбоводческие установки, как правило, монтируются в закрытых помещениях, поэтому потребность в площади постройки снижается с ростом показателя м/м.

При выборе размера бассейна обычно руководствуются практическими соображениями относительно его обслуживания. Размер бассейна должен соответствовать размеру выращиваемой рыбы. Бассейны более маленьких размеров удобнее использовать при проведении работ по сортировке и облову рыбы. Если выращенная рыба изымается из установки частями, то облов одного бассейна не отражается на самочувствии рыб в других бассейнах. В другом случае, при извлечении части рыбы из одного большого бассейна остальная рыба получает стресс и может остановить потребление корма на несколько дней. Потеря прироста вследствие стресса отображается на экономике выращивания и приводит к сбою работы установки в целом.

 
2. Водоснабжение


Водоснабжение замкнутых установок сводится к разовому заполнению и ежедневной подпитке свежей водой в количестве 3-10% от объема воды в установке в сутки. Расход воды на выращивание 1 кг рыбы снижается до 0,2-0,5 м3. Чтобы избежать возможного занесения с водой личинок сорных рыб, паразитарных и других заболеваний, грязи в замкнутые установки, их заполнение и подпитку совершают, как правило, из артезианских источников.

На вход к бассейну подается чистая, насыщенная кислородом вода, а на выходе из бассейна стекает вода, загрязненная продуктами жизнедеятельности рыб, содержание кислорода в которой снижено вследствие его потребления рыбой. Степень загрязненности воды на выходе из бассейна связана с количеством корма, который дается рыбе.

3. Подача воды


В замкнутой установке, оснащенной оксигенаторами, в бассейн подается вода, перенасыщенная кислородом. При контакте струи воды с атмосферой проявляется эффект дегазации, и кислород теряется. По этой причине подающий патрубок углубляется, а перенасыщенная кислородом вода смешивается без потерь с водой в бассейне. Для создания кругового движения воды в бассейне подающая струя направляется по касательной к борту бассейна. При выходе из подающего патрубка воды с насыщением кислорода к 50-60 мг/л (500-700% насыщения) в бассейне не образуется значительной по размерам зоны перенасыщения воды кислородом. Это обстоятельство не всегда учитывается даже специалистами, опасающимися использования воды с таким уровнем перенасыщения кислородом.

4. Сброс воды


Как правило, уровень воды в отдельном бассейне поддерживается при помощи переливного устройства, а выход воды из бассейна устраивается в его нижней части. Таким образом, все, что попало в бассейн, собирается в приемной камере слива и должно быть удалено с потоком воды.

Приемные камеры бассейнов являют собой ловушки для остатков (фекалии, остатки корма, мусор). Для удаления остатков, накопившихся в камере, скорость оттока воды многократно и скачкообразно увеличивают. Турбуленты, возникающие при этом, поднимают осадок, который подхватывается потоком воды. В некоторых установках для этих целей устанавливались автоматические устройства. Обычно слив отстоя производится вручную при помощи шандорного перелива.

Очищение сетки и приемной камеры в ряде установок выполняется при помощи щеток, приводящихся в движение при помощи электропривода и определенной программы.
 

5. Насос


Насос обеспечивает бесперебойную циркуляцию воды в установке. При помощи насоса обеспечивается проток воды через все элементы системы, имеющие гидравлическое сопротивление. В зависимости от конструктивных особенностей установки в ней может быть два и больше контуров циркуляции.

 

6. Фильтры

 
Для правильного функционирования УЗВ необходимы будут два механических фильтра.

Один механический фильтр служит для удаления из воды останков, которые поступают из бассейна с рыбой (фекалии, чешуя, погибшие животные и прочее).

Биологическая обработка воды являет собой многоступенчатый процесс превращения органических соединений в нетоксические продукты, безопасные для рыбы. Процесс выполняется аэробными бактериями, которые потребляют значительное количество кислорода, и сопровождается образованием биомассы бактерий и изменением рН-воды.

Второй механический фильтр предназначен для задержки частиц биологической пленки, которая образовывается в процессе биологического очищения воды из блока биологического очищения с потоком воды.
 

7. Температурная коррекция


Правильная температурная коррекция обеспечивает комфортные температуры, оптимальные для выращивания рыбы. Как правило, коррекция предусматривает подогрев воды. К примеру, охлаждение воды с целью задержки нереста или, наоборот, его стимулирования.

Не исключено, что в районах с достаточно жарким, континентальным климатом летом будет необходимо охлаждение циркулирующей воды с целью предотвращения гибели рыбы из-за перегрева.


 
8. Бактерицидная обработка


Бактерицидная обработка предназначена для снижения уровня бактериального загрязнения циркулирующей воды, возникающего в условиях высоких биологических нагрузок в установке. При низких и средних нагрузках бактерицидная обработка, как правило, не применяется. Высокая бактериальная загрязненность может быть определена визуально, поскольку вода из-за наличия в ней бактерий теряет прозрачность и становится мутной.


  9. Насыщение кислородом

 
Одним из главных элементов замкнутой установки является насыщение кислородом, поскольку все биологические процессы в установке проходят при значительном потреблении кислорода. Он расходуется как на дыхание рыб, так и на совершение окислительных процессов во время биологической обработки. Аппараты для насыщения воды кислородом могут быть разделены: один устанавливается перед подачей воды в бассейн, а другой – перед подачей воды на биологическую фильтрацию. В некоторых замкнутых установках аппарат насыщения воды кислородом и насос конструктивно объединены устройством под названием эрлифт.

 

10. Густота посадки рыбы


В характеристиках замкнутых рыбоводческих установок для выращивания товарной рыбы принято оценивать густоту посадки рыбы в бассейнах в кг рыбы на м3 воды в бассейне. Допустимое максимальное значение густоты посадки рыбы определяется в установке видом культивируемого объекта, обеспеченностью кислородом для дыхания и биологической фильтрации, а также мощностью устройств регенерации воды.

В установках, использующих технический кислород, который подается в воду через оксигенераторы, ограничений не существует, поэтому густота содержания рыбы может быть повышена. К примеру, густота посадки осетровых рыб может быть доведена до 83 кг/м, густота форели – до 100 кг/м, карпа – до 200 кг/м.

Превышение этого уровня приведет к непропорциональному увеличению концентрации продуктов метаболизма рыбы и биоценозу фильтра, увеличению кормового коэффициента и снижению скорости прироста массы рыбы.
 

11. Питание рыбы


Достижение рыбоводческих целей по переводу выращиваемых объектов на экзогенной питание во многом зависит от управления питанием. Кормление в замкнутых установках является практически единственным источником корма. В то же время, кормление оказывает влияние и на качество воды, циркулирующей в установке. Норму питания определяют как суточный рацион в процентах от веса тела рыбы. На размер рациона влияют вид рыбы, ее индивидуальный вес, температура воды, другие параметры воды, концентрация кислорода, концентрация технических веществ, освещенность, качество корма. Если все эти параметры учтены правильно, то рацион будет подобран оптимально и кормовой коэффициент (КК) будет минимальным.

Если рационы превышают оптимальные показатели, кормовой коэффициент также увеличивается. Рыба получает корм в большем количестве, чем она может усвоить в виде прироста массы. Чрезмерный корм либо не потребляется, как это происходит у форели, либо потребляется и переводится в фекалии, как у карпа. В любом случае, увеличивается нагрузка на очистительные сооружения, а качество воды снижается из-за накопления токсических веществ. В случае, если увеличение токсичности резко снижает уровень усвоения корма и последний только увеличивает загрязнение воды, процесс нарастания уровня токсичности может принять в замкнутой установке лавинообразный характер. С учетом влияния рациона кормления рыб на качество воды в установке лучше намного недокармливать рыбу, чем перекармливать.
 

12. Устройства отлова


Отловы рыбы в аквакультуре представляют собой определенную сложность. Довольно просто решаются обловы в плоских бассейнах объемом 8-10 м3. Вода из бассейна приспускается, рыба концентрируется в нижней части бассейна и вручную (сачками) перегружается в транспортные емкости.

Максимальный объем ручной перегрузки составляет 1000-1500 кг. В бассейнах большего объема (100-200 м

3) этот метод неприемлем, поскольку объем выгружаемой продукции растет, и это занимает длительный период, к концу которого рыба может потерять товарные качества.

Выгрузка рыбы из бассейнов такого объема проводится в режиме нормального водоснабжения, а рыба концентрируется в одном конце бассейна при помощи специальной подвижной сетчатой стенки – концентратора. Выгрузка рыбы из высоких силосов совершается частично при помощи каплеров – больших сачков с механизированным подъемом-спуском, а окончательная выгрузка – вручную.
 
Ориентируясь главным образом даже на производство, к примеру, осетрового мяса, не всегда целесообразно планировать хозяйство мощностью 100-200 тонн рыбы в год. Во-первых, на создание такого предприятия необходимо потратить минимум 500 тыс. долл. США и не каждое юридическое лицо может позволить себе такие средства. Во-вторых, не везде можно реализовать такое количество продукции. В-третьих, промышленные предприятия не берут осетров, выращенных в УЗВ на переработку. Накладные расходы данных предприятий поднимают уже и без того высокую стоимость осетра и делают его рынке неконкурентоспособным. В-четвертых, для УЗВ необходимо помещение. Для стотонника это приблизительно 10 тыс. м2 и для его строительства необходимы дополнительные инвестиции. Если добавить сюда еще сроки окупаемости такого предприятия, фактории риска и прочее, то они также не пойдут в пользу выбора многотонника.

Поэтому, лучше иметь УЗВ малой продуктивности. Малые УЗВ уже давно положительно зарекомендовали себя в практике. Они широко используются на многих предприятиях, выращивающих рыбу в садках, бассейнах и прудах на теплых сточных водах электростанций или в регионах с соответствующим теплым климатом.

УЗВ с невысокой мощностью является альтернативой успешного вложения денег. При наличии небольшого стартового капитала можно быстро построить УЗВ продуктивностью 5-10 тонн рыбы в год с себестоимостью, к примеру, если выращивать осетра, – 5-6 долл. за 1 кг. Самоокупаемость установки – 1,5-2 года. Инвестиции в такую установку составляют не более 50 тыс. долл. США. Вложить такие деньги в производство могут не только предприятия, фермеры, а и индивидуальные предприниматели.

Производство в УЗВ осетров, форели, сомов и других видов рыб может стать хорошим семейным бизнесом.

Сумму инвестиций можно сократить на 10-15%, если при сооружении малой УЗВ использовать собственный труд, подсобный материал или упрощенный проект установки с использованием только основных узлов: бассейны, фильтры грубого очищения, биофильтр, систему аэрации.

Потребление воды в УЗВ в сотни раз ниже, чем в бассейновых хозяйствах с прямоточным водоснабжением. Источником водоснабжения могут служить источники, артезианские скважины, чистые ручейки, речка. Это позволяет значительно увеличить количество рыбоводческих хозяйств, приблизить их к местам потребления рыбы; снизить удельные расходы. Незначительное водоснабжение в сочетании с полным биологическим и механическим очищением сточных вод делает УЗВ безопасным для окружающей среды.

Использование интенсивной технологии может реально сократить сроки выращивания рыбы в 2-3 раза с минимальными затратами человеческих ресурсов, а выход рыбы при этом всегда больше, чем при выращивании в естественных водоемах.

Установки замкнутого водоснабжения дают возможность выращивать почти все виды рыб на протяжении всего года и получать высококачественную продукцию в короткие сроки.

Строительство автоматической маленькой УЗВ для выращивания рыб

Строительство автоматической маленькой УЗВ для выращивания рыб

2 октября 2006 года.

Подвал площадью 120 м2, высота потолков 2,2 метра. Помещение неудобное для размещения больших бассейнов, а высота потолков накладывает ограничения на высоту узлов УЗВ, но дает неоспоримое преимущество зимой при отоплении помещения. Выглядит в форме буквы “П” – две комнаты соединены коридором. Помещение является арендованным, значит все узлы УЗВ должны быть разборными, легко демонтируемыми и переносимыми.

Осматриваем помещение с еще бывшими арендаторами, оно используется под небольшой склад:

На этой УЗВ будет осуществлена проверка новых идей:
  1. Проверить новую технологию выращивания раков и креветок при высоких плотностях посадки, которая полностью исключает каннибализм выращиваемых гидробионтов. Мы их разместим каждого в своей клеточке.
  2. Проверить новую систему компьютерного контроля и управления параметрами воды. Удаленный доступ к системе через интернет и мобильный телефон – полная автоматизация работы УЗВ.
  3. Проверить возможность создания и эксплуатации автоматических рыбных ферм работающих без людей. Мобильная бригада опытных ремонтников должна будет осуществлять выезд на место и ликвидацию возможных аварий в течение 30 минут после получение аварийного сигнала от управляющего компьютера.
  4. Проверить работу нашего нового биофильтра, сверхмалого и сверхмощного. Самое главное проверить его эксплуатационные характеристики. Если они окажутся приемлемыми, то тогда предлагать нашим клиентам такой тип биофильтра.
  5. Проверить возможность обогрева помещения за счет биохимических реакций в биофильтре и работающего электрооборудования, например насосов. Мы планируем эксплуатировать рыбоводную установку для выращивания рыб в не отапливаемом помещении и не имея своего отопительного оборудования.
  6. Проверить конструкцию и расчет нового безнапорного оксигенатора собственной сборки.
  7. Проверить озонную установку (контактную камеру и деструктор озона). Оксигенаторы и корпуса биофильтров соберем самостоятельно из прозрачного пластика с целью лучшей визуализации происходящих внутри процессов и контроля зарастаемости биопленкой.

Особое внимание уделено надежности системы в целом, для этого применено:

  • два генератора кислорода,
  • все насосы дублируются и автоматика на базе промышленного контролера Siemens ими управляет,
  • каждый бассейн имеет собственный оксигенатор, датчик уровня воды и концентрации кислорода,
  • аварийный, бензиновый электрогенератор с автозапуском.

Защита рыб от болезней решена путем установки еще одной карантинной УЗВ, где на 1 месяц помещают вновь полученных мальков, вода используется водопроводная (чистая) и экструдированный комбикорм, который термическую обработку 140ºС. Поэтому патогенный микроорганизм можно занести в установку или в результате диверсии, или в результате халатности персонала. Т.к. рыбная ферма автоматическая, нет постоянно присутствующего персонала, то этот риск минимален. Воровство мальков, корма и взрослой рыбы тоже исключается!

Состав узлов рыбоводной установки
  1. Круглый бассейн 3,2 метра в диаметре, 4 шт.
  2. Круглый бассейн 2,5 метра в диаметре, 1 шт. В последствии заменили его на 5 маленьких бассейнов прямоугольных.
  3. Автоматическая кормушка, 4 шт. Кормлением управляет микроконтроллер: доза корма каждый день увеличивается согласно графику роста рыб в бассейне, кормление прекращается если концентрация кислорода или рН воды достигнет критических параметров. Безнапорный оксигенатор, 5 шт. Впоследствии заменили на один конусный оксигенатор.
  4. Подставка для бассейнов высотой 30 см, чтобы вода самотеком поступала в систему механической фильтрации, 3 шт.
  5. Металлическая опора для потолка помещения, 3 шт.
  6. Озонная установка,1 шт.
  7. Бассейн сумматор, 1 шт.
  8. Биофильтр нового типа, 2 шт.
  9. Механический фильтр, 40 микрон сетка,1 шт.
  10. Генератор кислорода, 2 шт.
  11. Генератор озона, 1 шт.
  12. Карантинная УЗВ.
  13. Главный электрический щиток, 1 шт.
  14. Умывальник, 1шт.
  15. Канализационный стояк.
  16. Вход в помещение.
  17. Вентиляционная труба, ведущая на крышу здания.
  18. Управляющий работой УЗВ микроконтроллер. Подключен через интернет к нашему пульту слежения за работой рыбных ферм. Наш главный сервер каждые 5 минут подключается к контролеру, тестирует его, проверяет параметры воды в УЗВ, записывает в базу данных.
  19. Электрощит, питающий электрическое оборудование УЗВ.
  20. Воздуходувка, 1 шт.
  21. Стол и стул.
  22. Аварийный бензиновый электрогенератор с автозапуском, 1 шт.

План есть (в последствии мы немного от него отошли).

За работу товарищи!

20 октября 2006 года.

Подводим в помещение необходимые коммуникации – 3-х фазное электроснабжение мощностью 5 кВт, водопровод, канализацию, вентиляцию и интернет.

Декабрь 2006 года.

Продолжаем ремонт, покрасили водоотталкивающей краской потолок. Обидно, что практически все оборудование уже куплено, а приступить к монтажу еще не можем, т.к. не готово помещение.

  1. Выявились проблемы с канализацией. Вода уходит, но не со свистом. Если полностью открыть кран и подождать минут 5, то уровень в трубе начинает подыматься.
  2. Делаем трап в полу, чтобы удалять воду, которая случайно пролита на пол.
  3. Монтируем механический барабанный фильтр с микросеткой 40 микрон.

4 января 2007 года.

10 января 2007 года.

По просьбе наших постоянных посетителей выкладываем фотографию нашей собственной пластиковой загрузки для нового типа биофильтра. Как вы можете видеть, размер гранул от 1 до 2 мм. Ориентировочно площадь поверхности составляет от 2000 м2/м3 и больше. Это дает возможность строить сверх маленькие биофильтры.

При использовании технологии производства в домашних условиях (разработал Василий Краснобородько), гранулы получаются с шероховатой поверхностью, что будет способствовать удержанию бактериальной биопленки на них. Биофильтр с такой пластиковой загрузкой будет установлен на этой УЗВ в прозрачном корпусе для обкатки процесса нитрификации на гранулах. Себестоимость производства гранул, по нашим оценкам, составляет 40-50 евро/м3.

Все наши клиенты, работающие с осетром, могут получить бесплатную консультацию по вопросам производства у себя на месте этой пластиковой загрузки и замены установленных ранее биофильтров на новые! Не рекомендуем устанавливать эти гранулы на биофильтры сомовников.

riga5t6_00 OLYMPUS DIGITAL CAMERA

15 января 2007 года.

Монтаж продолжается.

Монтаж первых бассейнов диаметром 3,2 метра. Бассейны специально сделаны для рыбоводства, имеют усиленные борта. Т.к. помещение арендовано, то бассейны можно разбирать. Вообще мы всю нашу рыбную ферму можем разобрать и собрать на новом месте. Проверка прочности подставки и самих бассейнов путем заполнения последних водой. Если при выращивании рыбы сломается подставка или бассейны, то нам это будет очень дорого стоить! Ошибки не допустимы.

OLYMPUS DIGITAL CAMERA

27 января 2007 года.

Подготовка места для карантинной УЗВ и ее монтаж. Эта рыбоводная установка будет служить для предварительного содержания всех вновь прибывших гидробионтов в течение 1 месяца при плотности посадки примерно такой же, как в основной УЗВ. Это обеспечит безопасность выращиваемых рыб на рыбной ферме. Эта карантинная УЗВ имеет свою автономную систему электроснабжения на 40 минут. Главная УЗВ на случай аварии имеет электрогенератор достаточной мощности. Этого времени достаточно, чтобы приехала наша ремонтная бригада и решила проблему. УЗВ состоит из бассейна, сепаратора, отстойника, системы оксигенации, генератора озона (своего собственного), системы озонации воды и деструкции озона, биофильтра и системы автоматики.

28 января 2007 года.

Мы задействовали пластиковую загрузку для биофильтра с уже давно работающего биофильтра, поэтому в тот же день привозим для тестирование УЗВ 9 кг угрей и две аквариумные рыбки. Надеемся рыбок сразу не съедят!

Проверка работоспособности УЗВ. Вода удовлетворяет рыбоводным нормам. Все наши испытатели живы и находятся в хорошем настроении. Приступаем к кормлению.

15 февраля 2007 года.

Монтаж озонной установки (фотки не показываем), сама контактная камера сделана из прозрачного пластика для визуализации процесса озонирования воды. Высота камеры 2,2 метра. Сделана по специальному заказу на заводе.

Изготовление бассейна сумматора и его монтаж.

26 февраля 2007 года.

Запустили контроллер слежения и управление карантинной УЗВ через интернет. Для просмотра пяти параметров воды (температура, кислород, ОВП, электропроводимость, рН; еще скоро подключим аммоний и нитраты) в реальном времени через интернет, нужно установить небольшую программку на свой компьютер. Пока контроллер работает в тестовом режиме и только осуществляет мониторинг параметров воды рыбоводной установки. Запоминает параметры воды и выводит графики в любом масштабе. Также работает программа слежения (устанавливается на любой компьютер) за работой контроллера с возможностью оповещения заданных лиц при достижении критических параметров воды. Программа слежения может следить за неограниченным количеством контроллеров (если у вас компьютер столько потянет), опрашивая их последовательно с заданным интервалом через интернет.

К слову, бесплатно подключаем к контроллеру фермы наших клиентов и предоставляем программы слежения за работой установки для выращивания рыбы в замкнутых системах через интернет. Во избежание злоупотреблений, пока подключаем к контроллеру только клиентов.

27 февраля 2007 года.

Вносим изменения в проект, меняем безнапорные оксигенаторы на один напорный. Нет времени на сборку безнапорных оксигенаторов.

16 марта 2007 года.

Сделали все кроме электрики и автоматики. Также требуются доработки по биофильтру. Прозрачный корпус биофильтра треснул, ведем ремонтные и укрепляющие работы.

Экономика

На данном этапе можем озвучить сметы на строительство такой УЗВ для Латвии, но без электрики и автоматики:

  1. Проект 15000 евро. Сюда входит регистрация заказчика в Латвии как производителя рыб, сертификация в министерстве сельского хозяйства и у местных ветеринаров, а также получение всех необходимых документов на выращивание гидробионтов в ЕС в нашей установке.
  2. Оборудование нам обошлось примерно 50000 евро с доставкой в Ригу. Мы применили только самое лучшее из известного нам оборудования. Естественно, вопрос покупки насоса из нержавеющей стали или обычного насоса, это обсуждаемый вопрос, поэтому если Вы что-то меняете, то цена всей УЗВ может быть ниже.
  3. Монтаж 5000 евро, если силами нашей бригады, и не возражаем если Вашей.
  4. Электрика и автоматика обсуждаемый вопрос. Насколько требуется защитить оборудование и рыб? Если будет установлена наша автоматика, то беремся следить и обслуживать установку за отдельную плату. При срабатывании сигнализации выезжает ремонтная бригада и исправляет неполадки. Помогаем в страховании рыбы.
Технические данные рыбной фермы
  1. Потребление электричества 4,5 КВт.
  2. Потребление воды, при максимальной загрузке 6-7 м3/сутки.
  3. Обогрев пока отсутствует. Собственный ресурс УЗВ по тепловыделению велик по отношению к размерам и кубатуре помещения. При эксплуатации зимой минимальная температура воды была +10С.

27 апреля 2007 года.

Монтаж электрики и автоматики на базе промышленного контроллера Siemens S7. Решили отказаться от компьютера из-за его  слабой надежности в сравнении с промышленными контроллерами.

Контроллер имеет модульную систему. Коммуникации: реализован удаленный доступ через web интерфейс, SMS модем для отправки и приема SMS сообщений от обычного мобильного телефона.

Контроллер в реальном времени получает информацию о работе установки по выращиванию рыбы при помощи 56 цифровых входов (уровни воды, давление, аварийные сигналы от электрических узлов и т.д.) и 12 аналоговых входов (разные датчики параметров воды). Может вмешиваться в работу рыбной фермы, для этого имеет 12 выходов для управления узлами УЗВ. Средства визуализации: сенсорная панель у оператора УЗВ, находится на электрическом ящике, человек – машинный интерфейс SCADA WinCC. Сейчас усиленно идет работа по написанию программы управления под контроллер Siemens S7.

Из-за применения системы автоматики нет надобности круглосуточно держать штат операторов УЗВ.  А операторы часто становятся проблемой: это потенциальное воровство (кража мальков и корма) и халатность. Оператор – это потеря денег: для круглосуточной работы требуется 4 человека. Если по 600 евро в месяц (это минимум на 2007 год), то 4*600=2400 евро в месяц, отсюда в год 28800 евро. Вывод: автоматика себя легко окупает.

Для людей, панически боящихся технического прогресса, предусмотрено ручное управление. Просто нажимаем на контролере кнопку стоп и включаем и выключаем соответствующие реле.

8 июня 2007 года.

Пуско-наладочные работы и проверка работы всех узлов. Еще не готова программа для контроллера, но свет в конце туннеля виден.

Установка оснащена достаточно мощным генератором озона и, соответственно, системой озонирования воды и системой удаления остаточного озона из воды, все это вместе мы называем “смертью паразита”, т.е. если в воде есть паразит, то попав в контактную камеру озонирования его больше нет. Нет даже воспоминания о нем. Дешевый вариант системы озонирования, это ультрафиолет, но он не дает такую высокую смертность паразитов. Генератор озона имеет дистанционное управление и управляется контроллером. Также он выдает на контроллер десяток вариантов ошибок своей работы, которые закодированы в трех битах информации.

Биофильтр

Новый биофильтр разработал Василий Краснобородько. Сделан он из прозрачного ПВХ (PVC). Этот материал варится феном и легко гнется, если его разогреть. Четыре раза переделывали биофильтр, чтобы правильно подобрать гидродинамические параметры его работы. Когда создаешь что-то новое, то неизбежно приходится терять время и деньги на эксперименты.

Очень интересна реакция людей на этот биофильтр. Сначала, год назад, когда мы опубликовали первый раз информацию об изготовлении пластиковой загрузки для биофильтра в домашних условиях. Некоторые товарищи из Украины стали писать, что такого не может быть, потому, что не может быть. Через полгода, когда мы запустили свой первый опытный образец биофильтра и стали его демонстрировать рыбоводам, эти же товарищи стали писать, что это мы разработали еще 20 лет назад, ссылаясь на работы по механическому фильтру на гранулах. Хочется заметить, что главной задачей механического фильтра является удаление из воды взвешенных веществ, а биофильтр имеет противоположную задачу – пропускать, не задерживая взвешенные частицы, а иначе он не будет биофильтром. Остерегайтесь непрофессионалов.

Что такое УЗВ » FISH-AGRO | Проектирование и поставка оборудования для рыборазведения в УЗВ

ПРИГЛАШАЕМ ВАС НА ИНДИВИДУАЛЬНЫЕ УЧЕБНЫЕ КУРСЫ ВЕБИНАРЫ!

Уважаемые начинающие рыбоводы и фермеры!

К нам на сайт поступает много писем и звонков от начинающих фермеров, желающих начать свой бизнес по разведению рыбы с "0", но не представляющих с чего начать, как и по какому плану надо действовать, чтобы достичь желаемого результата. Поверьте, это долгий разговор и поэтому лучше встречаться и разбираться в учебном кабинете или в офисе, теперь по телефону.

Нам приходится проводить телефонные консультации о системах УЗВ для различных видов гидробионтов по нескольку часов подряд.

В условиях самоизоляции самым удобным способом общения является вебинар по скайпу...

Типичные вопросы людей, планирующих начать бизнес в области аквакультуры:

Здравствуйте!

Есть желание пройти профессиональную подготовку, приобрести новые знания в незнакомой сфере деятельности, выращивание рыбы в УЗВ, для создания своей аквафермы.
Предоставляете ли вы такую услугу, если да, то стоимость, время обучения, где находитесь.

Спасибо!

В связи с этим, мы решили организовать учебные курсы, вебинар и пригласить всех желающих на платной основе пройти курс молодого бойца.

Можем сформировать фокус-группу по различным направлениям выращивания аквакультуры, договориться о времени проведения вебинара индивидуально.

Данные курсы, по нашему мнению, безусловно, окажутся полезными не только для владельцев предприятий, но и для технического персонала, так как позволят в короткие сроки освоить основы товарного выращивания рыбы.

Кроме групповой формы обучения возможны индивидуальные занятия.

В данной ситуации наиболее приветствуется индивидуальная форма обучения с группой партнеров или отдельно взятым фермером по скайпу...

Обучение на курсах позволит Вам узнать гораздо больше о ньюансах рыбоводства, сделать записи. В результате  Вы получите максимум информации по интересующей Вас тематике. Для иногородних слушателей вебинар наиболее приемлемая форма обучения.

По итогам обучения Вы поймете, какую УЗВ, какой мощности и примерно по какой цене Вы можете себе позволить. Если по исходу обучения нами будет заключен контракт на предпроектные работы, то стоимость обучения будет зачтена в стоимости контракта полностью. Если по результатам предпроектных работ Вы пойдете дальше и закажете у нас бизнес план, то все наши расчеты бесплатно лягут в основу бизнес плана, который также на договорной основе будет сопровождаться вплоть до сдачи в банк.

После всех подготовительных работ наступит момент, когда Вы осознаете полностью всю ответственность за проект и решите начать работы по строительству и поставке оборудования.  В этом случае пуско-наладка оборудования (при условии выполнения нами монтажных работ) окажется также полностью бесплатна для Вас.

Вам помогут определиться в следующих вопросах:

  • С выращивания какой рыбы начать?
  • Какой минимальный объем рыбы необходимо выращивать, чтобы предприятие было прибыльным?
  • Каков срок окупаемости инвестиций в аквакультуру?
  • Каковы требования к предприятию аквакультуры со стороны государственных органов?
  • Выбор места и помещения
  • Каким требованиям должна удовлетворять вода?
  • Где взять мальков? нужно ли содержать собственное маточное стадо? Каким образом доставить их на ферму? Как правильно оформить документацию?
  • Какие корма лучше всего использовать...
Как работает система разведения рыбы в УЗВ » FISH-AGRO | Проектирование и поставка оборудования для рыборазведения в УЗВ

Сегодня большинство предпринимателей пересмотрели свое отношение к сельскому хозяйству, и благодаря этому его самые различные отрасли стали стремительно развиваться. Одним из направлений, которое в последнее время стало расти довольно активно, является рыбоводство. К сожалению, суровый климат нашей страны, часто был препятствием для быстрого роста этого перспективного и прибыльного сегмента, и разведение рыбы традиционным способом в прудах было невозможным в некоторых регионах России. Но сейчас существуют технологии, позволяющие минимизировать воздействие окружающей среды на рост рыбы.

 

УЗВ | Установка замкнутого водоснабжения

Одной из наиболее перспективных технологий выращивания рыбы является – УЗВ (установка замкнутого водоснабжения). Ее технологические возможности позволяют выращивать рыбу круглогодично, избегая при этом массовой гибели мальков или взрослых особей. Ко всем достоинствам метода разведения рыбы в УЗВ, можно отнести тот факт, что выход товарной рыбы с метра площади по сравнению с традиционным способом увеличивается в несколько раз. Установить УЗВ можно где угодно, в то время как обычный пруд будет зависеть от рельефа местности и наличия грунтовых вод. 

Как происходит разведение рыбы в установках замкнутого водоснабжения:


Рыбу поселяют в специальный бассейн, в котором установлены различные приборы для поддержания оптимального уровня всех важных для жизнедеятельности рыб компонентов. Чтобы рыбы не болели, и их жизненный цикл не нарушался, вода должна регулярно фильтроваться и обогащаться кислородом. Такие условия имитируют естественные, сохраняя здоровье рыб и не сказываясь негативно на их размножении Для конкретного вида рыбы должен поддерживаться определенный температурный режим. Такие манипуляции стимулируют рыбу потреблять больше корма, а это в свою очередь положительно влияет на скорость роста мальков. 

 

Составляющие УЗВ:
Как уже говорилось, комплекс УЗВ для успешного функционирования должен состоять из нескольких компонентов. Чаще всего необходимы бывают следующие технические элементы:
Бассейн
Механические фильтры
Оборудование или технология для денитрификации
Биофильтры
Насосы
Обеззараживание
Подогрев воды
Оксигенератор 

Все эти компоненты крайне важны для нормальной работы установки, потому что правильно подобранное, бесперебойно функционирующее оборудование – это залог успешной работы всей системы. 

 

Бассейн. Это основной компонент комплекса УЗВ, потому что именно с его установкой и размещение связаны основные хлопоты по разведению рыб. Бассейны бывают трех типов. Наиболее распространены круглые, так как что они удобны и просты в эксплуатации из-за их эргономичной формы. В них возникают потоки воды, похожие на те, что имеются в естественных условиях, которые способствуют лучшему ее очищению. Также работают и овальные и квадратные бассейны. Благодаря улучшенной рециркуляции загрязненная вода почти сразу убирается из резервуара. Эти три формы лучше всего подходят для разведения рыб в условиях УЗВ. Прямоугольные бассейны самостоятельно практически не очищаются. При этом они неплохо экономят площадь. Если место в крытом помещении ограничено, то, установив прямоугольный бассейн, можно сэкономить пространство. 

 

Механические фильтры. Отработанную воду, которая губительна для здоровья рыб, необходимо очищать от взвешенных в ней частиц. Поэтому сразу жидкость с продуктами их жизнедеятельности попадает в механический фильтр. Чаще всего используют фильтр барабанного типа, он наиболее прост и надежен в эксплуатации. Конечно, для повышения эффективности работы, его нужно периодически промывать. Чтобы структура частичек воды не была нарушена и соответствовала биологическим показателям, необходимо обеспечить подачу воды к фильтру самотеком. Такой способ не вызывает разрушения частиц находящихся в воде и способствует лучшей ее очистке. 

 

Биологические фильтры. В воде бассейна накапливается множество вредных веществ, которые могут погубить все поголовье рыб, при большой концентрации. К таким соединениям относятся аммонийный азот. Он образуется вследствие жизнедеятельности рыб и разложения остатков корма. Для их удаления вредных компонентов, в воду помещают в специальный резервуар. На размещенных в воде элементах живут колонии бактерий, которые очищают воду. Это биологический способ очистки, который так же безопасен для жизнедеятельности рыб. Чтобы и бактерии чувствовали себя хорошо и имели возможность питаться, вода подвергается аэрации. Таким образом, очистка заметно ускоряется. Кроме того, кислородом также удаляются излишки углекислого газа. 

 

Насосы. Для нормальной циркуляции воды, необходимо обеспечить забор отработанной жидкости и приток свежей чистой воды. Для этих целей применяют насосы. В среднем к каждой порции воды выбранной из резервуара с рыбой необходимо добавлять 5-15 % свежей воды. Эти расчеты довольно приблизительны, поэтому рассчитывать соотношение вод необходимо в индивидуальном порядке. 

 

Денитрификация. При содержании рыбы, особенно осетровых пород, в воде скапливается излишки нитратов. Для снижения концентрации нитратных соединений в воде применяются определенные меры. Это может быть как вливание каждые сутки определенного объема свежей воды, так и пропускание использованной воды через денитрификатор. Принцип работы денитрификатора мало чем отличается от обычного биофильтра. Разница в том, что относится к фильтрам закрытого типа. Бактерии, которые живут в фильтре, разлагают нитраты на свободный азот. А он в свою очередь, будучи инертным газом, уже не вступает в реакции и выводится из воды. Процесс проходит при подпитке воды углеродами. Конечно, пропускная способность такого фильтра невысокая. Именно поэтому через него пускают только часть потока воды. Однако это дает возможность поддерживать уровень нитратов в воде на необходимом биологическом уровне. 

 

Обеззараживание. В большинстве УЗВ комплексов используется двухступенчатое обеззараживание воды с переменным применением двух методов очистки. Сначала производится облучение ультрафиолетовыми лампами. На втором этапе вода озонируется. Все эти манипуляции максимально снижают вероятность попадания в бассейны опасных микроорганизмов. 

 

Подогрев и оксигенация. В процессе очистки вода охлаждается, поэтому перед подачей в резервуар с рыбой ее следует нагреть до необходимой температуры. Также требуется обогатить воду кислородом. В воде, которая насыщена кислородом рыба меньше тратит энергии на процесс дыхания и следовательно быстрее растет. 

 

Кормление. От питания напрямую зависит рост рыбы. В комплексах УЗВ применяют высокопитательные комбикорма. Состав кормов подбирается исходя из породы рыб. Кормление производится со специальных кормушек. 

Виды рыб для УЗВ » FISH-AGRO | Проектирование и поставка оборудования для рыборазведения в УЗВ

На протяжении многих веков рыбы сем. Сichlidae являются основным источником питания в некоторых странах Азии и Африки. Эти рыбы занимают ведущие позиции в мировой аквакультуре. В 1997 г. производство тиляпий достигло 1 млн. т, уступая только карповым и лососевым.

Благодаря специфическим особенностям размножения культивирование тиляпии можно легко осуществлять на протяжении круглого года.

Тиляпии являются прекрасным модельным объектом при изучении разнообразных вопросов физиологии, биохимии, генетики и селекции рыб и их воспроизводства.

Семейство цихлидовых (Cichlidae), подсемейство (Tilapinae), к которым относятся тиляпии, содержит 70 видов и образует 4 рода и 10 подродов, которые отличаются между собой особенностями репродуктивного поведения тиляпий. Наибольший интерес для индустриального рыбоводства представляют тиляпии, относящиеся к роду ореохромис (Oreochromis Gunter), включающий 15 видов и 18 подвидов.

Одним из видов, представляющих интерес для отечественной индустриальной аквакультуры, является тиляпия ауреа, или голубая тиляпия (Oreochromis aureus Steindachner,1864), широко распространенная в Израиле, Ливане и Иордании. В Россию она завезена в 1983 г. и может достигать массы до 5 кг.

Тиляпии очень теплолюбивые рыбы. Оптимум температуры воды для них составляет 22-350С, а пороговые температуры –10-15 и 38-420С. Голубая тиляпия выдерживает понижение температуры воды до 6,7-8,00С, а содержание растворенного кислорода до 0,2-0,3 мг/л. При благоприятных условиях среды голубая тиляпия достигает товарной массы 200-400 г уже за 6-8 мес.

Все 15 представителей этого семейства легко поддаются культивированию, обладают высоким темпом роста и хорошими вкусовыми качествами. Все они легко разводятся и выращиваются в прудах, но в наших умеренных широтах их лучше культивировать в индустриальных условиях на теплых водах энергетических объектов.

Тиляпии наряду с карпом являются популярным объектом аквакультуры многих стран. Они широко представлены в Африке и Ближнем Востоке. В настоящее время их начали выращивать и в регионах с умеренным климатом, используя энергию теплых вод ТЭС, АЭС и геотермальных вод, большие запасы которых у нас имеются на Дальнем Востоке, в Западной Сибири и Северном Кавказе. Как тропические рыбы они хорошо развиваются в летнее время в водоемах–охладителях. Успешно проходит их выращивание в установках с замкнутым циклом водообеспечения.

Обладая деликатесным мясом с низким содержанием жира и отсутствием межмышечных косточек, тиляпии являются распространенными объектами разведения в Бельгии, Франции, Израиле, Индии, Китае, Японии, США и др.

В разных странах в зависимости от местных условий обычно используют тиляпий трех родов: род Tilapia, представители которого T. sparmani, T. mariae и др. откладывают икру на субстрат; род Sarotherodon – вынашивают потомство в ротовой полости самцов и самок и род Oreocrhomis – инкубация проходит во рту только самок. Особи этого рода представляют наибольший интерес и чаще используются на практике – это тиляпия ауреа (Oreochromis aureus), тиляпия нилотика (O. niloticus), тиляпия макрочир (O. macrochir) и тиляпия мозамбика (O.mossabicus), являющаяся наиболее известной и распространенной в практике рыбоводства.

Все виды тиляпий растительноядные рыбы, но одни из них питаются высшей водной растительностью (макрофитами), другие – фитопланктоном. Планктофаги имеют длинные и тонкие жаберные тычинки, рыбы с короткими и редкими тычинками питаются крупным кормом.

Многие из них всеядные и могут переходить с растительной пищи на животную. Они могут использоваться как биологические мелиораторы. Обитают в основном в солоноватой воде, но могут жить и размножаться даже в морской воде. Яванская и нильская тиляпии (O. niloticus) могут жить в водах с большим содержанием биогенных элементов, то есть в воде, где другие рыбы неспособны выживать.

Содержание производителей и ремонтного молодняка. Тиляпии достигают половой зрелости в возрасте до одного года. Сроки полового созревания определяются условиями содержания и в первую очередь температурным режимом, а также кормлением. Так, при температуре 27-290С самки тиляпии мозамбика созревают в возрасте 3-4 мес., самцы немного раньше. При более низкой температуре созревание происходит позднее. Например, в водоемах-охладителях Черепетской и Приднепровской ГРЭС, при содержании в садках, тиляпия мозамбика созревает в возрасте 4-5 мес. Тиляпия аурея и нилотика созревают несколько позже – обычно в возрасте 5-6 мес. Имеются данные о том, что чем хуже условия существования, тем раньше тиляпии достигают половой зрелости.

При содержании в прудах ремонтного молодняка и производителей плотность посадки молоди не должна превышать 5-10 тыс. шт./га, производителей – 1-2 тыс. шт./га. Плотность посадки производителей при садковом и бассейновом содержании должна быть 20-30 шт./м2. Производителей необходимо кормить полноценными комбикормами с содержанием протеина 25-30 %. В период нерестовой кампании нужно вводить в рацион компоненты, богатые витаминами, а именно дрожжи, ряску, водоросли.

Разведение тиляпии в нашей стране базируется главным образом на индустриальных методах выращивания. Важное значение при этом приобретает племенная работа. Основным методом селекции тиляпии в настоящее время является массовый отбор, предполагающий сохранение на племя лучших по фенотипу особей. Важнейшими направлениями селекции тиляпии являются: ускорение роста, лучшее использование корма, повышение устойчивости к низким температурам, замедленное половое созревание.

Массовый отбор в маточное стадо проводят среди молодых, впервые созревающих производителей в основном по массе и экстерьеру. В дальнейшем производителей оценивают по качеству потомства. При массовом отборе следует принимать во внимание наличие у тиляпии полового диморфизма. У разных видов тиляпии половой диморфизм выражен различно. Наиболее сильно он проявляется у тиляпии из рода Oreochromis. У тиляпий рода Sarotherodon он выражен слабо, а у тиляпии рода Tilapia отсутствует. Самцы тиляпий рода Oreochromis существенно превосходят по массе самок, поэтому отбор самых крупных особей на племя без учета этого обстоятельства может привести к диспропорции в соотношении полов.

Оптимальное соотношение самцов и самок тиляпий, относящихся к разным родам, заметно различается. Это необходимо учитывать при формировании маточных стад. У тиляпий рода Oreochromis оптимальное соотношение самцов и самок 1:5-1:7. У тиляпий рода Sarotherodon к одной самке подсаживают 1-2 самцов. У тиляпий, откладывающих икру на субстрат, соотношение самцов и самок 1:1.

Плодовитость у тиляпий разных родов существенно различается, так виды, не охраняющие потомство, имеют значительно большую плодовитость. Например, самка тиляпии цилли может откладывать 5 тыс. икринок и более. У тиляпий, инкубирующих икру в ротовой полости, плодовитость заметно ниже. Величина рабочей плодовитости зависит от массы самки: тиляпия мозамбика может выметать за один нерест в зависимости от массы тела и условий содержания от 100 до 2500 икринок (табл. 73).

При выборе технологии заводского воспроизводства тиляпии необходимо принимать во внимание особенности их размножения. Например, половозрелые тиляпии рода Oreochromis в условиях оптимального температурного режима и хорошей обеспеченности кормом способны регулярно откладывать икру через 25-35 сут., а искусственное прерывание вынашивания потомства у самок на 1-5 сут. после нереста приводит к ускорению икрометания.

Разведение тиляпии. Эти рыбы хорошо размножаются как в прудах, так и в каналах, бассейнах, аквариумах и садках.

При разведении в прудах на 0,1 га помещают 30-50 самок и 15-30 самцов. В зависимости от вида соотношение самок и самцов может быть различным.

Различать самок и самцов в период нереста легко. Так, самцы тиляпии мозамбика значительно крупнее самок и отличаются от них темной окраской. У тиляпии макроцефала более темные самки. Кроме того половой диморфизм у тиляпии выражается в разном строении мочеполового сосочка: у самок при визуальном наблюдении видны два, а у самцов одно отверстие.

Размножаются большинство видов тиляпий при температуре 24-280С. Самцы в период нереста становятся агрессивны, и каждый из них занимает охраняемую им территорию, которая может быть от 0,5 до 6 м2, в зависимости от вида тиляпии. Затем начинается постройка гнезда. У тиляпий, откладывающих икру на субстрат, защищают территорию, копают гнездо и ухаживают за потомством оба родителя. Самка выметывает икру, которую осеменяет самец. Икра клейкая. Нерест длится 2,5-3 ч. Инкубация проходит в течение 2-3 сут. после вылупления эмбрионы находятся 3-4 сут. в гнезде, после чего переходят на активное питание.

Тиляпии, вынашивающие икру в ротовой полости, также строят гнездо, но после осеменения и оплодотворения икры забирают ее в рот. При нересте в бассейнах или аквариумах, при размножении тиляпий, относящихся к роду Oreochromis, к одному самцу подсаживают 5-7 самок. Самец выбирает готовую к нересту самку и отгоняет остальных. Нерест длится 5-15 мин. Самка выметывает икру, которую тут же осеменяет самец. Оплодотворенную икру самка забирает в рот.

Отнерестившихся особей нетрудно отличить по характерному подчелюстному мешку и периодическим "жующим" движениям челюстей, вследствие чего происходит перемешивание икры во рту. Самок, инкубирующих икру, лучше пересадить в отдельную емкость или отгородить перегородкой. Отсаживать самок нужно стеклянной или пластмассовой банкой, так как сачок использовать нельзя из-за того, что они выбрасывают икру из ротовой полости.

Инкубация икры и вынашивание личинок в ротовой полости представляет собой идеальную защиту для потомства: слизистая оболочка ротовой полости этих рыб выделяет секрет, по-видимому, угнетающий развитие бактерий и грибков, а непрерывное перемешивание икры в ротовой полости способствует хорошей аэрации и вместе с тем лучшему контакту с секретом слизистой.

У тиляпий, инкубирующих икру в ротовой полости, развитие икры продолжается от 3 до 10 сут и зависит от вида рыб и температуры воды. У тиляпий мозамбика и ауреа при температуре воды 27-280С вылупление эмбрионов проходит на 4-5 сут, у "красной" тиляпии (гибридная форма: самка O. mossambicus x самец О. niloticus) – на 5 сут. Молодь покидает рот самки только при переходе на активное питание. Длительность пребывания во рту, т.е. от вылупления до перехода на активное питание при температуре 27-280 С, колеблется от 4,5 до 8,5 сут.

Во время вынашивания икры и личинок самка не питается. После перехода личинок на активное питание, это совпадает с их первым выходом из ротовой полости ( на 11-13 сут после нереста), у самок начинают активно расти ооциты новой генерации, которые будут выметаны при следующем нересте.

У рыб, вынашивающих потомство в ротовой полости, наблюдается высокая пластичность репродуктивной функции. Например, если на 2-3 сут после нереста искусственно прервать инкубацию икры, то последующее икрометание наступит через 18-20 сут. У особей, с естественно протекающей инкубацией, интервалы между нерестами составляют в среднем 25-35 сут, например, у тиляпии мозамбика.

У самок отмечается индивидуальная вариабельность по темпу икрометания. Это следует учитывать при проведении племенной работы. Так, в зимний период периодичность икрометания увеличивается, что по-видимому, связано с изменением таких факторов, как освещенность и кормление.

С возрастом и массой плодовитость самок заметно возрастает. Также существенно увеличиваются размер и масса икринок и личинок (табл. ). Выход личинок при естественной инкубации достигает 98 %. Проводить инкубацию икры тиляпии можно в аппаратах Вейса или в небольших емкостях вместимостью 3-5 л с подачей воздуха. Хорошие результаты получают при инкубации икры и содержании эмбрионов в 8 % -ном растворе поваренной соли. При такой инкубации выход эмбрионов составляет 80-95 %.

Существенное влияние на выживаемость личинок тиляпии оказывает размер икры. Поэтому при отборе производителей предпочтение следует отдавать особям с более крупной икрой.

Тиляпия легко размножается по сравнению с другими рыбами, что в ряде случаев ведет к перенаселению водоемов, снижению продуктивности и является одной из сложных проблем при ее культивировании. Поэтому выращивать тиляпию лучше совместно с хищными рыбами (сом, угорь большеротый окунь).

При выращивании тиляпии в монокультуре эффективным является содержание в водоеме особей одного пола, что исключает возможность размножения. Так как самцы у большинства видов растут значительно быстрее самок, то выращивание только одних самцов позволяет значительно увеличить выход продукции. Однако сортировка и отбор однополых особей весьма трудоемки. Хотя самцы значительно крупнее самок. Они имеют крупные челюсти и массивную голову, плавники у них больше по размерам, заостренные и удлиненные. Окраска у самцов более яркая. Отличаются они и по характеру поведения, являясь более агрессивными.

Отличить самца и самку можно по половому сосочку. У самцов на конце полового сосочка имеется мочеполовое отверстие, сам сосочек удлиненной конической формы. У самок половое отверстие расположено отдельно от мочевого и находится на передней стороне сосочка ближе к вершине. Метод определения пола по строению полового сосочка у молоди, особенно если слабо выражены другие вторичные половые признаки, труден и требует высокой квалификации рыбовода.Весьма перспективным представляется способ межвидовой гибридизации, позволяющий получать преобладающее количество самцов в потомстве

Представляет интерес способ получения однополого потомства путем искусственной реверсии (изменения) пола производителя. Так скармливание личинкам с пищей половых гормонов, например тестостерона, в течение первых нескольких недель после вылупления позволяет увеличить выход самцов. Рекомендуется использовать молодь длиной 9-11 мм при плотности посадки в бассейны 2600-3000 шт./м3. Доза гормона этинилтестостерона – 60 мг, метилтестостерона от 30 до 60 мг на 1 кг корма. Время скармливания от трех до шести недель. Выход самцов достигает 80-100 %.

Следует отметить, что использование гормональных препаратов для получения однополого потомства довольно трудоемко и требует определенных навыков при работе с большим количеством молоди.

Выращивание молоди и товарной рыбы. Выращивать молодь и товарную рыбу можно в прудах, садках, бассейнах и других емкостях. Но для эффективного выращивания тиляпии подходят водоемы с температурой воды 230С и выше на протяжении 4 мес и более.

В садках и бассейнах молодь выращивают в два этапа: первый – выращивание молоди до 1 г при плотности посадки 10000 – 20000 шт./м3, второй – выращивание до 5-10 г при плотности посадки 2000 шт./м3. При поддержании кислорода на оптимальном уровне возможны и более плотные посадки. Продолжительность выращивания составляет 30-45 сут. Выход молоди – 80-85 %. При переходе на активное питание личинки имеют крупные размеры и способны потреблять гранулированные комбикорма. На первом этапе содержание протеина в комбикорме должно быть 30-34 %, по мере роста его количество можно снизить до 23-26 %.

При выращивании молоди в прудах до массы 3-5 г, плотность посадки должна быть 200-250 тыс. шт./га. Пруды должны быть небольшие по площади, хорошо спланированные и высокопродуктивные. Выход молоди составляет 75-80 %.

Выращивание тиляпии проводят как в моно-, так и поликультуре. Товарной считают рыбу массой 200 г и выше. Растет тиляпия достаточно быстро и при благоприятных условиях среднесуточный прирост составляет 3-5 г. Весь цикл выращивания – от получения личинок до товарной продукции составляет 160-180 сут. Таким образом, в условиях с оборотной системой водоснабжения, в течение года возможно многократное получение продукции.

Поликультура. Эффективным является метод совместного выращивания тиляпии и карпа в садках и бассейнах. Для кормления тиляпий можно использовать комбикорма, предназначенные для карпа. Эти рыбы используют экскременты карпа, обрастания на стенках бассейнов и садков. Все это снижает расход кормов, улучшает гидрохимический режим, способствует увеличению продуктивности на 10 %.

Выращиванием товарной тиляпии заканчивается цикл работ рыбоводных хозяйств с нерегулируемым температурным режимом. На зиму оставляют только маточное поголовье, которое содержат в бассейнах или других емкостях с подогревом воды. Температура воды должна быть 20-230С. Величина рациона 2-3 % от массы рыбы. При таком режиме производители увеличивают свою массу на 25-50 %. В феврале - марте при повышении температуры до 25-270С получают потомство, подращивают молодь и проводят новый цикл выращивания (рис.3).

В хозяйствах с регулируемым температурным режимом выращивать тиляпий можно круглый год. Например, на геотермальных водах, но необходимо учитывать химический состав геотермальных вод. Некоторые из них не пригодны для разведения и выращивания. В условиях УЗВ за 4-6 мес выращивания можно получать более 100 кг/м3 тиляпии.

В условиях замкнутых систем водообеспечения создается благоприятная среда для культивированя тиляпий. Показано, что годовая мощность УЗВ определяется не только созданием благопритных условий выращивания рыбы и обеспечением кормами высокого качества, но и применяемой технологией прозводства. Эксплуатация рыбоводной установки в режиме полицикла позволяет повысить ее годовую производительность в 1,5-2 раза по сравнению с двухразовым зарыблением. Использование тиляпий как добавочных рыб с карпом обеспечивает более эффективное потребление кормов. Кормовой коэффициент понижается до 0,2-0,3.

Выращивание в УЗВ проходит благополучно при следующих параметрах состава воды: температура – 25-310С, реакция среды – 6,5-7,5, растворенный кислород – 3-24 мг/л, аммиак – 0,3 мгN/л, нитриты – 0,02 мг/л, нитраты – до 60 мг/л, взвешенные вещества – до 50 мг/л.

В процессе выращивания необходимо ежедневное добавление 1/3 объема свежей воды, поддерживать фотопериод – 12 ч свет, 12 ч – темнота. Освещенность поверхности бассейнов составляет около 600 люкс.

Кормление осуществляют при строгом контроле за качеством кормов. Применение корма с перекисным числом более 0,2 на ранних этапах онтогенеза до дифференцировки пола приводит в последующем к фенотипической инверсии пола у самок и неспособности их к размножению из-за недоразвитости выводящих половых протоков.

Тиляпию в УЗВ кормят обычно кормами марки РКС, РГМ-5В, 12-80 и др. с соответствующим размером частиц (0,5-3,0 мм).Применяют автоматизированную раздачу кормов. Внесение зелени (крапива, листья лопуха, салат и др.) осуществляют вручную. Опыт выращивания в УЗВ позволил выработать некоторые бионормативы (табл. 74).

Таблица 74

Масса, г

Плотность, кг/м3

Выживаемость, %

Период выра-

ния, сут

Водообмен, ч

2-15

2,5

75

30

1

15-60

20

95

30

1

60-100

60

96

30

1

100-140

90

97

30

1

140-180

120

97

30

1

180-220

150

97

30

1

220-250

150

93

30

1

В процессе выращивания при достижении рыбой массы 15 г отбирают для дальнейшей работы 95%, поддерживая температуру воды 27-280С. Нагрузка на биофильтр (УЗВ- 10 т/год) составляет 2 т. Кормовой коэффициент корма РГМ-5В при масссе 2-100 равен 1,2, при 100-200 – 1,5 и при 200-300 г – 1,5 (табл. 75).

Таблица 75

Технологические показатели работы узв при выращивании тиляпии

Масса, г

Плотность посадки в силосе объемом, 4 м3

Расход воды,

м3

количество, шт.

общая масса, кг

2-10

2164

21,6

4,5

10-30

1969

98,4

10,0

50-100

1893

189,5

10,0

100-150

1837

192,0

11,2

150-200

1731

346,2

11,6

250-300

1680

420,0

11,8

Своеобразие биологии тиляпии, ее всеядность и неприхотливость к условиям внешней среды позволяет организовывать выращивание ее в поликультуре с карпом и осетровыми рыбами (Жигин,2003).

 

Технология УЗВ | Установки замкнутого водоснабжения | Рыба разведение, рыбоводство » FISH-AGRO | Проектирование и поставка оборудования для рыборазведения в УЗВ

   Замкнутые рыбоводные установки зародились в США в середине 20 века.  Их использование было обосновано американской национальной программой восстановления численности естественных популяций форели в северо-западных штатах США.

 

    Сегодня Установки Замкнутого Водоснабжения (УЗВ) активно используется аквакультурными хозяйствами по всему миру. 

 Основной задачей УЗВ является искусственное создание среды обитания гидробионтов, обеспечивающей максимальный выход товарной продукции в сокращённые сроки при сохранении качества товара. Кроме того, к такого вида установкам предъявляются требования эффективного использования водных ресурсов - минимальная подпитка, использование оборотной воды.

   Круглогодичное выращивание гидробионтов в закрытых аквакультурных фермах исключает режимы зимовки, тем самым интенсифицируется процесс роста. Чем качественней технология, тем лучше среда обитания и, как следствие, выше темпы роста рыбы. Кроме того, качественно очищенная вода позволяет повысить плотность посадки рыбы и более эффективно использовать производственные площади.

Бассейны

Средой обитания гидробионтов в технологической линии являются бассейны с подготовленной водой. Главная задача всего технологического процесса – очистка оборотной воды, поскольку от 95 до 85 % воды, слитой из рыбных бассейнов, возвращается в систему и требует удаления из неё продуктов жизнедеятельности рыб для дальнейшего возврата.

Механическая очистка

Очистка начинается с механической фильтрации. Наиболее эффективные устройства для этой операции – барабанные фильтры, представляющие собой вращающийся в корпусе микросетчатый барабан. Барабан требует периодической промывки отфильтрованной водой, тем самым решается две задачи – очистка барабана от твёрдых, нерастворённых частиц (фекалии рыб, не съеденный корм) и выведение из оборотной системы воды с накопленными вредными веществами (нитраты, сульфаты). Важным моментом при транспортировке воды к механическим фильтрам – создание самотёчной системы. Такая транспортировка не разбивает взвешенные частицы и не растворяет их в воде, тем самым повышая качество механической очистки. Кроме того повышается энергоэффективность линии, за счёт исключения дополнительных насосных групп.

Биологическая очистка

Следующим этапом очистки воды является процесс удаления из воды растворённого азота – биофильтрация. Продукты жизнедеятельности рыб, не съеденный корм вызывают аккумуляцию аммонийного азота в воде, который крайне токсичен для гидробионтов. Решением данной задачи является перевод аммонийного азота в нитраты, концентрация в воде которых может быть в сотни раз выше аммонийного азота без ущерба для живущих в воде рыб. Такая химическая реакция возможна благодаря биоорганизмам – бактериям, живущим на поверхностях биофильтра. Биофильтр представляет собой ёмкость (зачастую бетонную, заглублённую в пол), которая заполнена элементами – биозагрузкой, на поверхностях которой селятся колонии бактерий. Ёмкость биофильтра – биореактор наполняется водой и подвергается аэрации. Воздух создаёт барботажный эффект, что интесифицирует процеес, а также снабжает биофильтр необходимым кислородом. Кроме того, интенсивная аэрация в биофильтре способствует удалению углекислого газа из воды, накапливаемого от дыхания рыб.

Насосное оборудование

Дальнейшая очистка воды осуществляется в потоке, поэтому после биофильтра установлена насосная группа. К бассейну-сумматору, из которого осуществляется забор воды насосами, подведён источник чистой воды. Таким образом, в бассейне-сумматоре осуществляется подпитка чистой водой, в количестве равном удалённой со стоками воды. Обычно эта величина на уровне 5-15 %.

Денитрификация

После биофильтра для ряда видов рыб, в том числе для осетровых, решается вопрос денитрификация. Не смотря на высокие допустимые нормы концентрации нитратов в воде, их количество непрестанно растёт и требует удаление их из системы. Осуществляется это либо за счёт увеличения ежесуточной подпитки либо введением в технологию денитрификатора. Денитрификатор – это тот же биофильтр, только закрытого типа (без доступа кислорода). В денитрификаторе за счёт бактерий идет разложение нитратов на свободный азот. Процесс денитрификации протекает при постоянной подпитке источником углерода. В большинстве случаев это метанол. Все денитрификаторы имеют невысокую пропускную способность по воде, поэтому устанавливаются в систему байбасом, т.е. пропуская через себя только часть потока.

Регулировка рН

В процессе биофильтрации и денитрификации, снижается щелочной показатель воды, уровень pH. Его необходимо регулировать путём периодического внесения в бассейн сумматор щёлочи. Для таких целей применяется обчная пищевая сода.

Обеззараживание

Следующая стадия включает в себя дезинфекцию воды. Наиболее эффективна – двухэтапная дезинфекция. Первый этап – ультрафиолетовое облучение, путём пропускания воды через ультрафиолетовые лампы. Второй этап – это обработка воды озоном. Для этого устанавливается озонатор, который сам вырабатывает озон и растворяет его в воде. 

Подогрев воды

В процессе очистки воды и после подпитки её из чистого источника, температура воды падает. Необходимо довести технологическую воду до температуры, соответствующей биотехническому нормативу. Для этого используется теплообменник, который как и денитрификатор устанавливается байпасом. К теплообменнику подводиться источник тепла – горячая вода, температурой 80-90 ºС.

Оксигенация

Подготовка воды перед подачей в бассейны завершается насыщением её кислородом. Вода пропускается через кислородный конус – оксигенатор, к которому подведён источник кислорода (кислородная станция или баллоны с кислородом), и в нём происходит насыщение воды до заданных параметров.

Подготовленная вода подаётся в бассейны таким образом, чтобы создать течение в бассейне.

Система мониторинга

Контроль работы линии осуществляется системой мониторинга, которая обычно включает в себя датчики кислорода, температуры и рН.

Кормление

Кормление рыб автоматизировано. В бункер кормушек засыпается комбикорм, устанавливается таймер и задаётся порция кормления, после чего кормушка сама выбрасывает корм в заданное время.

 

 

Современная технология замкнутого водоснабжения, применяемая компанией заключается в следующем:

Домашнее УЗВ » FISH-AGRO | Проектирование и поставка оборудования для рыборазведения в УЗВ

Строительство загородного дома – довольно трудоемкое занятие, требующее вложения немалых средств. Чтобы они не были потрачены зря, от застройщика требуется не только соблюдение технологии при работе с материалами, но и выполнение строительных норм и правил. Наиболее распространенной ошибкой, приводящей к судебным искам и спорам с соседями, является нарушение расстояния между домом и соседским забором.

Градостроительный Кодекс РФ строго регулирует правила застройки участков, определенных для индивидуального жилого строительства. Разработанные на его основании строительные нормы, определяют минимальное расстояние между различными объектами, расположенными на участке и забором соседей. Они часто могут иметь дополнения, разработанные на региональном уровне, применительно к местности проживания. Общепринятое минимальное расстояние между соседским забором и домом должно составлять три метра.

Если строительство начинается на участке, где уже живут соседи, нужно соблюдать не только расстояние до их забора, но и до их домов. Так, если жилые строения выполнены из негорючих материалов, минимальное расстояние между ними должно быть не менее 6 метров. От деревянного дома соседей придется отступать уже 15 метров, а от кирпичного – 10 метров. Если дома имеют более 1 этажа, расстояние должно превышать 15 метров.

Такие параметры строительства основываются на соблюдении противопожарных норм и продиктованы требованиями безопасности при возгорании одного из объектов. Излишняя сближенность построек приведет к быстрому распространению пожара по соседним участкам.

Неисполнение этих требований может обернуться довольно серьезными неприятностями. Например, построенный дом не получится зарегистрировать в отделении Росреестра и получить необходимые документы для оформления права собственности. Новоиспеченный владелец дома, таким образом, лишится права распоряжаться собственным имуществом – продавать, дарить, менять, сдавать его в аренду. Кроме того, согласно статье 222 Гражданского кодекса РФ, такой дом будет признан самовольной постройкой. То есть возведенным в нарушение существующих строительных норм и правил. Самовольную постройку закон предписывает полностью снести за счет собственника.

В некоторых случаях самовольную постройку все же можно зарегистрировать по решению суда. Однако гораздо проще соблюсти все существующие нормы строительства. Это позволит спокойно и безопасно жить в собственном доме, не испытывая проблем с законом и не тратя свое время и средства на судебные тяжбы.

Рыбоводство


2

Аквакультура мало что делает, если что-нибудь, для сохранения дикого рыболовства

11 февраля 2019 г. - Новое исследование показало, что аквакультура или рыбоводство не помогает сохранить дикую природу ...


Макияж марикультуры: мировые тенденции в производстве морепродуктов

15 октября 2019 г. - Процесс выращивания морепродуктов в океане, известный как марикультура, является растущей тенденцией, но о траекториях его развития известно мало.Вот почему команда исследователей отправилась в ...


Рыбоводов Карибского моря

10 января 2019 г. - В море очень много рыбы. И наш аппетит на морепродукты уже довел многие дикие рыбные промыслы до предела. Между тем растущее население планеты будет только дальше ...


Рыба и овощи: поток воды для более эффективных систем Aquaponic

20 ноября 2018 г. - В аквапонике гидропонные культуры используют питательные вещества из рыбных отходов в качестве удобрения, в то время как рыбы извлекают выгоду из способности растений поглощать питательные вещества для улучшения качества воды.Очищенная вода ...


Талант с креветками Квест находит победителя

11 октября 2018 г. - Креветки помогают содержать рыбу в чистоте - и ученые определили «чистых креветок», обладающих наибольшим талантом в борьбе с паразитами и химическом использовании в сельском хозяйстве ...


Исцеление креветками Раненая рыба

23 августа 2018 г. - Ученые обнаружили, что креветки помогают исцелить раненых ...


Перемещение рыбных ферм позволяет лугам Seagrass процветать, исследования показывают

12 июля 2018 года. У берегов Кипра в Средиземном море многие рыбные фермы были перенесены в более глубокие воды - и на морском дне под их прежними местоположениями луга процветают однажды...


Как альтернативы рыбной муке и маслу могут поддержать рост аквакультуры

20 мая 2020 г. - Поскольку мир все больше обращается к водному фермерству, чтобы прокормить растущее население, нет лучшего времени, чем сейчас, для разработки системы аквакультуры, которая была бы устойчивой и ...


Обогащенная среда в аквакультуре Повышает выживаемость рыб от бактериальных заболеваний

15 августа 2019 г. - Новое исследование показало, что обогащение при выращивании молоди значительно увеличивает выживаемость рыб от бактериальной инфекции, обычно наблюдаемой в условиях выращивания.Это также может улучшить ...


Ключевая океаническая рыба может преобладать с изменениями в выращиваемой рыбе и рационах домашнего скота

14 июня 2018 года. Новое исследование показывает, что если нынешняя практика аквакультуры и сельского хозяйства останется неизменной в будущем, популяция диких кормовых рыб, вероятно, будет чрезмерно расширена к 2050 году и, возможно, ...


,
рыбных ферм | Информация и ресурсы по рыбоводству

Рыбоводческие хозяйства или рыбоводство являются одной из форм аквакультуры. Акт рыбоводства заключается в коммерческом выращивании рыбы в резервуарах или в загонах для потребления человеком. Существуют различные типы рыбоводческих хозяйств, которые используют разные методы аквакультуры.

Первый метод - это система клеток , в которой используются клетки, которые размещены в озерах, прудах и океанах, содержащих рыбу. Этот метод также широко называют офшорным культивированием.Рыбу держат в клетках, подобных структурам, «искусственно кормят» и собирают. Метод клеточного рыбоводства за последние годы позволил добиться многочисленных технологических достижений, особенно в том, что касается снижения заболеваемости и экологических проблем. Тем не менее, проблема номер один в клеточном методе заключается в том, что рыба убегает и теряется среди популяции диких рыб.

Второй метод - это ирригационных или прудовых систем для разведения рыбы. Основное требование для этого метода - наличие канавы или пруда с водой.Это уникальная система, поскольку на небольшом уровне рыбу кормят искусственно, а отходы, полученные от рыбы, затем используются для удобрения полей фермеров. В более широком масштабе, в основном в прудах, пруд самоподдерживающийся, так как выращивает растения и водоросли для кормления рыб.

Третий метод разведения рыбы называется - составное разведение рыбы , которое представляет собой тип рыбоводства, позволяющий сосуществовать в одном и том же пруду как местным рыбам, так и импортированным рыбам. Количество видов зависит, но иногда оно превышает шесть видов рыб в одном пруду.Виды рыб всегда тщательно отбираются, чтобы обеспечить сосуществование видов и снизить конкуренцию за пищу.

Четвертый метод разведения рыбы называется интегрированных систем переработки отходов , который считается самым масштабным методом «чистого» разведения рыбы. При таком подходе используются большие пластиковые емкости, которые размещаются внутри теплицы. Есть гидропонные кровати, которые размещены рядом с пластиковыми баками. Вода в пластиковых резервуарах циркулирует в гидропонных слоях, куда отходы корма для рыб поступают, чтобы обеспечить питательные вещества для сельскохозяйственных культур, которые выращиваются в гидропонных слоях.Большинство видов растений, которые выращиваются на гидропонных грядках, - это травы, такие как петрушка и базилик.

Последний тип разведения рыбы называется Классическое разведение молоди. Этот метод также известен как «проточная система». Это когда виды спортивной рыбы выращиваются из яиц, попадают в ручьи и выпускаются.

Существует множество различных видов рыб, выращиваемых на рыбных фермах. Наиболее распространенные виды выращиваемой рыбы - это лосось, карп, тилапия, сом и треска.

Выращивание сома

Разведение сома легко выращивать в теплых климатических условиях. Сом преимущественно разводят в пресноводных прудах и кормят в основном соей, кукурузой и рисом. Сома часто считают одной из наиболее устойчивых рыб, предназначенных для целей разведения рыбы. Выращивание сома впервые началось в 1900-х годах и стало коммерциализированным в 1950-х годах. Сом густонаселен из-за его пользы для здоровья и спроса на рынке. Выращенный на ферме сом обычно добывается в возрасте 18 месяцев, тогда как дикий сом обычно становится намного больше.Существует ряд видов сомов, но три самых выдающихся из них - синий, канальный и плоскоголовый сом.

Тилапия, разводимая

Тилапия - третья по популярности рыба, используемая в рыбоводстве или аквакультуре. Первые два вида - карп и лосось. Они выросли в популярности из-за их высокого белка, большого размера и способностей роста. Тилапия - это тропическая рыба, для выживания которой требуется более теплая вода. Идеальная температура воды обычно составляет от 28 до 30 градусов Цельсия.Известно, что рыба тилапия быстро размножается, и это является проблемой для управления видами рыб тилапии для сельскохозяйственного использования. Если не управлять должным образом, рыба будет активно конкурировать за пищу, что может привести к задержке роста. Поэтому самцы почти исключительно используются. Тилапии устойчивы к болезням и паразитам. Рыбоводство тилапии возникло в Африке и популярно в Гондурасе, Папуа-Новой Гвинее, Филиппинах и Индонезии. Рыба тилапия требует зерновой диеты и не ест другую рыбу, но она также считается одним из наиболее агрессивных видов рыб.

Лосось

Лосось - один из самых популярных видов рыб, среди которых чаще всего выращивается атлантический лосось. Есть еще две разновидности тихоокеанского лосося, которые также выращиваются на ферме - чинуки и кохо. Выращенный лосось вакцинируется для предотвращения вспышек заболеваний, и только в редких случаях ему требуются дополнительные лекарства. Часто возникают вопросы о разной окраске дикого лосося и выращиваемой на ферме - лосось, выращенный на ферме, не окрашивается, его цвет определяется пищей.Корм для лосося предназначен для сохранения запасов дикой рыбы.

Тунцеводство

Тунец - это морская рыба, которая играет важную роль в коммерческом рыбоводстве. Япония является крупнейшим потребителем тунца и вложила значительные средства в изучение рыбы. Существуют различные виды тунца, в том числе, голубой, желтый и белый альбакор. Популяции голубого тунца значительно сократились в некоторых регионах из-за чрезмерного промысла. Выращивание тунца является сложным, поскольку рыбы «массивны» и очень активны, поэтому имитировать их естественную среду чрезвычайно сложно.Большая часть тунца, потребляемого человеком, добывается в дикой природе и выращивается на объекте для увеличения веса. Тунец плотоядный и ест другую рыбу. Тунец обычно выращивается в чистых загонах на море, а в некоторых случаях - в системах рециркуляции.

Выращивание угрей

Выращивание угрей началось в начале 1950-х годов и считается одним из самых прибыльных с точки зрения стоимости экспорта в рыбной промышленности. Однако величина прибыли в значительной степени определяется азиатскими рынками и зависит от культуры.Угри являются плотоядными и катадромными рыбами, а это означает, что в молодом возрасте они живут в пресной воде, но по мере взросления они мигрируют в море для размножения - находясь в пресной воде от 8 до 30 лет, прежде чем мигрировать. Большая часть разведения угря происходит в Азии, причем крупнейшими производителями являются Китай, Япония и Тайвань. Стеклянные угри предпочтительнее, чем угри, потому что их легче транспортировать и отлучать от искусственных диет. Выращивание угря может принимать одну из двух различных форм - рециркуляционный резервуар высокой интенсивности (в помещении) или интенсивное прудовое сооружение.

Аквакультура

Аквакультура также известна как «аквакультура», которая связана с разведением водных организмов, таких как рыба. Фермерский аспект аквакультуры подразумевает некоторый аспект вмешательства в процесс естественного выращивания для увеличения производства. По данным Продовольственной и сельскохозяйственной организации Объединенных Наций, аквакультура росла в три раза быстрее по сравнению с наземным животноводством.

Товары для разведения рыбы

Товары для разведения рыбы необходимы для аквакультуры.Поставки могут варьироваться от кормления и кормушек, систем фильтрации, инкубаториев, систем отопления и охлаждения, освещения, гидропоники, сантехники, борьбы с хищниками, резервуаров и продуктов для обработки воды - это лишь некоторые из них.

Корма и кормушки Качество корма важно для рыбоводства и жизненно важно для здоровья рыбы. В зависимости от того, какой корм вам дают, он может помочь с желаемым цветом, ростом и общим здоровьем и благополучием. Существует большое разнообразие различных кормов, которые подходят для различных типов методов и видов аквакультуры.

Системы фильтрации воды Системы фильтрации воды важны при попытках смягчить воздействие на окружающую среду. Фильтрация включает в себя удаление отходов из воды. Существует ряд различных типов систем фильтрации, которые могут использоваться, но это часто зависит от состояния процесса фильтрации. Важно иметь систему поэтапной фильтрации, которая обеспечит наиболее оптимальный результат.

Инвентарь для инкубаториев Инвентарь для инкубаториев включает в себя все, что угодно - от грейдеров, отгрузки до нерестилищ и обработки контейнеров.

Управление хищниками Инструменты управления хищниками используются в среде обитания рыб, что часто включает использование физических сдерживающих факторов, которые могут включать визуальные и звуковые сдерживающие факторы.

Внутреннее разведение рыбы

Внутреннее разведение рыбы является альтернативой выращиванию рыбы на открытом воздухе в клеточной системе. С появлением технологических достижений, выращивание рыбы в помещении теперь возможно, используя надлежащие методы контроля производства. Внутреннее рыбоводство зачастую очень сложное и в некоторых случаях позволяет автоматически собирать и перерабатывать рыбные отходы в удобрения.У рыбоводства в помещении есть свои преимущества и недостатки:

Преимущества рыбоводства в помещении

  • • Рыба защищена от хищников и погодных изменений.
  • • Рыба часто добывается быстрее благодаря контролю температуры, качества воды и практики кормления.
  • • Внутреннее рыбоводство часто считается более экологически чистым, поскольку требует меньше воды и производит меньше отходов.
  • • Предотвращает вероятность того, что рыба сможет спастись и потеряться среди популяций диких рыб.
  • • Позволяет более высокую плотность запасов и часто экономит затраты на оплату труда на ферме.
  • • Часто это обеспечивает большую гибкость в местах расположения объектов, что может сэкономить транспортные расходы, если объекты расположены вблизи рынков.

Недостатки выращивания рыбы в помещении

  • • Требуются затраты на электроэнергию.
  • • Требуется создание инфраструктуры, которая часто требует значительного стартового капитала.
  • • Рыба, выращенная в помещении, является плотоядной, что требует отлова большого количества другой рыбы для их рациона.
.

Отправить ответ

avatar
  Подписаться  
Уведомление о