Разное

Аэродинамическая: Что такое аэротруба? Аттракцион, который поможет взлететь » Блог Freezone

10.02.2018
Что такое аэротруба? Аттракцион, который поможет взлететь » Блог Freezone

С появлением аэродинамической трубы любители экстрима могут наслаждаться свободным полетом в воздухе без риска для здоровья. Тренажер имеет безопасную, продуманную конструкцию, потому практически не имеет ограничений и может быть испытан широкой аудитории посетителей.  

Содержание

  Содержание

1. Немного истории: цели использования аэродинамической трубы

2. Конструкция и принцип  работы аэродинамической трубы

3. Аэродинамический тренажер: развлечение или спорт?

4. Свободные полеты: от мала до велика

Немного истории: цели использования аэродинамической трубы

Наши предки с незапамятных времен мечтали о свободном полете и пытались создать аппараты, которые поднимут их к небесам. С годами было сделано десяток научных открытий и человечеству стали доступны различные технические средства, позволяющие преодолеть земную гравитацию. Одна из таких разработок – вертикальная аэродинамическая труба. Первую аэротрубу сконструировали в 1871 году в Великобритании. Устройство предназначалось для научных испытаний – с его помощью наблюдали за поведением твердых тел в потоке воздухе. Одновременно с тем аэродинамическая труба была построена в России. Оборудование использовалось для разработок и испытаний в военном деле. Изобретение аэротрубы стало большим вкладом для авиационной промышленности – она помогала тестировать парашюты, самолеты и другие летательные аппараты.

5.jpg

 Для полетов человека аэротрубу стали применять только в 1964 году в США. Установка помогала отрабатывать необходимые навыки космонавтам и спортсменам-парашютистам. Лишь только в 2000-х годах это изобретение стало использоваться как аттракцион. Свободные полеты в воздухе вызывают у людей потрясающие и незабываемые эмоции, что способствует популяризации такого развлечения. Опробовать прыжки в аэротрубе предлагает комплекс FREEZONE. Два огромных аэродинамических тренажера подойдут как для новичков, так и для профессиональных спортсменов, желающих повысить уровень своего мастерства при спуске с парашютом. Попробуем разобраться, что это такое аэродинамический симулятор?

Назад к содержанию

Конструкция и принцип работы аэродинамической трубы

 Аэротруба – это специализированный тренажер, что позволяет испытать ощущения свободного падения. Раньше подобные эмоции можно было пережить, только прыгнув с парашютом. Однако немногие готовы рискнуть жизнью, сиганув с самолета. Такое развлечение опасно, не каждому под силу преодолеть страх высоты. Аэротруба как аттракцион вполне безопасен. Пройдя инструктаж, посетитель легко освоиться в воздушном пространстве. Принцип действия технической установки основан на нагнетании воздуха. Аэротруба работает за счет одного или нескольких крупных вентиляторов, которые создают мощный воздушный поток скоростью 190 до 260 км/ч в вертикальной трубе. Конструкции современных тренажеров отличаются по нескольким параметрам:

  • Расположением вентилятора. Он может находиться в верхней или нижней части трубы.
  • Размером полетной зоны. Оборудование отличается высотой и диаметром.
  • Скоростью воздушного потока. Показатель зависит от мощности вентилятора аэротрубы.
  • 4.png

     Чтобы обезопасить человека, находящего внутри тренажера от травм, полетная зона ограждена специальной металлической сеткой. Она не позволит посетителю попасть в лопасти вентиляторов аэротрубы. В течение всего времени полета за рабочей зоной наблюдает оператор. Он регулирует скорость потока в зависимости от физической подготовки и навыков клиента. Перед каждым сеансом в аэродинамическом тренажере посетитель проходит инструктаж. В процессе тренер расскажет, как устроена аэротруба, ознакомит с техникой безопасности и проинформирует, что следует делать, находясь внутри симулятора. Опытный персонал центра FREEZONE поможет быстро привыкнуть к состоянию свободного падения, овладеть телом и за несколько сеансов совершать несложные трюки. Как работает аэротруба и ее принцип действия станет более понятен на практике.

    Назад к содержанию

    Аэродинамический тренажер: развлечение или спорт?

     Многие специалисты до сих пор расходятся во мнении, аэротруба что это: спортивный тренажер или экстремальное развлечение? Сегодня техническое устройство соединяет в себе несколько функций. Парашютисты тренируются в аэротрубах, чтобы улучшить профессиональные навыки и отточить трюки. Специалисты утверждают, что аэродинамический полет сравним с парашютными прыжками. Он дает в полной мере ощутить, что такое состояние свободного падения. Потому желающие совершить затяжной прыжок с парашютом изначально пробуют свои силы в аэротрубе. Для детей аэродинамический тренажер служит своеобразным увлекательным аттракционом.  Для взрослых аэротруба – это прекрасный активный отдых, интересный способ провести досуг.

    Благодаря тому, что аэродинамическая установка устроена как тренажер, кроме приятных эмоций вас ожидает:

    • Находясь внутри аэротрубы, посетитель активно сжигает калории.
    • При таких нагрузках прекрасно работает мышечный корсет, улучшается координация движений.
    • Другие экстремальные развлечения вряд ли подарят столько положительных эмоций как аэротруба. Организм во время тренировок синтезирует гормон счастья, который укрепляет нервную систему и улучшает иммунитет.

    парк развлечений Фризон.jpg

    Аэротруба устроена просто, однако ее применение довольно широко. Нередко походы в аэродинамический комплекс превращаются для людей в хобби. Сегодня часто проводят спортивные соревнования по полетам в трубе, где участники соревнуются в мастерстве, исполняют сложные трюки и даже танцуют. Большие достижения начинаются с малого. Запишитесь на первый сеанс полета в аэротрубе в комплексе FREEZONE на удобное время. Кроме того, у нас можно купить подарочный сертификат, чем вы порадуете своих родных или близких. 

    Назад к содержанию

    Свободные полеты: от мала до велика

     Принцип действия аэротрубы понятен, теперь осталось разобраться, кого допускают к данному виду развлечений. При соблюдении техники безопасности аэродинамический тренажер не причинит вреда здоровью человека. Главное в аэротрубе избегать касаний в боковые стенки, не хвататься за защитную сетку. К полетам допускаются даже дети (от 4 лет) и пожилые люди (до 70 лет). Показатели достаточно условны – все зависит от веса (он должен находиться в пределах 20-130 кг), состояния здоровья и физической формы. Аэротруба – это тренажер с минимальным списком противопоказаний. Не рекомендуют совершать полеты:

    • беременным;
    • лицам с психическими отклонениями;
    • при наличии заболеваний опорно-двигательной системы, остеопороза;
    • людям, недавно перенесшим травму.

     Комплекс FREEZONE приглашает всех желающих полетать в аэродинамической трубе и провести торжественные мероприятия в пределах центра. Наша команда организует великолепный праздник, будь то детский день рождение, корпоративное мероприятие или другое значимое событие. Сеансы полетов в аэротрубе станут неотъемлемой частью развлекательной программы. К услугам клиентов большой конференц-зал, хороший ресторан с собственной кухней, квалифицированный персонал, способный позаботиться о вашем комфорте. Окунитесь в мир удовольствия и экстрима. 

    Назад к содержанию

«Старейшая аэродинамическая труба страны раскрывает свои секреты» в блоге «Своими глазами»

Аэродинамическая труба Т-1-2 Центрального аэрогидродинамического института имени профессора Н.Е. Жуковского — старейшая в России. Уникальная конструкция, которая была изготовлена из дерева и за годы эксплуатации ни разу не потребовала серьезного ремонта, по-прежнему востребована. Здесь исследовали модели монументов Зураба Церетели, башни «Москвы-Сити» и другие необычные объекты. О крупнейшей в мире на момент создания аэротрубе рассказал начальник отдела научно-исследовательского Московского комплекса ЦАГИ, кандидат физико-математических наук, ведущий эксперт в области аэродинамики зданий, архитектурных и строительных сооружений Александр Борисович Айрапетов.

 © Бионышева Елена/Сделано у нас

—  Как была создана Т-1-2?

— Начну с того, что решение о создании ЦАГИ было принято в 1918 году. Сегодня это решение кажется мне сверхчеловеческим: в стране только завершилась революция и шла гражданская война, казалось бы, такие масштабные проекты были практически невозможны. Но начало было положено — и уже к Великой Отечественной войне институт вышел на первую позицию в мире.

Материальная база для исследований была создана невероятно быстрыми темпами — и это, прежде всего, аэродинамическая труба, о которой мы говорим. Т-1-2 была построена по идее Б.Н. Юрьева и Г. М. Мусинянца под руководством A.M. Черемухина. Она предназначалась для испытания фюзеляжей одномоторных самолетов, радиаторных установок, поплавков и других элементов летательных аппаратов. Аэротрубу запустили 31 декабря 1925 года, и она стала самой большой в мире на тот момент.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

— Что из себя представляла эта аэротруба?

— Конструкция трубы была выполнена из сосны — другого доступного материала в 1925 году в стране не было. Трудно поверить, но «инженер Божьей милостью» А. Черемухин подбирал древесину даже с учетом направления волокон. Сохранились документы с его расчетами, согласно которым требовалось 10 вагонов вагонки сушеной сосны и 1000 шпилек. Иными словами, все фермы соединялись без единого гвоздя, что делает нашу аэротрубу уникальной.

 © Бионышева Елена/Сделано у нас

Мы регулярно контролируем состояние трубы и ежегодно проводим мероприятия по пожарной безопасности — осуществляем пропитку всей деревянной конструкции антипожарными составами. Но ее создатели были поистине гениями: деревянная конструкция проработала 95 лет, и за это время в ней ни разу не проводился капитальный ремонт. Настолько хорошо сделано — ни просадок, ни искривлений! Единственной серьезной работой стал в 2018-2019 годах ремонт системы управления электроприводом вентилятора: был совершен переход на новую элементную базу и систему запуска, что невероятно облегчило нам производственный процесс.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

Т-1 была оборудована четырехкомпонентными весами, а для Т-2 был создан винтовой прибор, приборы для изучения штопора самолета и установка для определения вращательных производных. Хотелось бы отметить и одну необычную особенность: в отличие от практически всех труб сходного класса, имеющих «О-образную» форму, она незамкнута и имеет очень длинный прямолинейный канал, а роль обратного канала играет просто внутренность здания, его «футляра» (С.А. Чаплыгин). По изначальному замыслу, одна рабочая часть должна быть небольшой, но скоростной, а другая — наоборот. Однако эти части не «ужились» вместе, потому как при работе малой части в большой нет необходимого для испытания качества потока. В итоге трубы «развели» через сдвижной диффузор.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

— Что испытывали в Т-1-2?

— Первыми в трубе были исследованы образцы крыльев, которые ранее проходили испытания в лаборатории Жуковского и за границей в Германии и Франции, а также модель самолета Фоккер. Кстати, одна из алюминиевых моделей крыла того времени до сих пор существует и используется как «контрольное крыло» в Т-1 и Т-5. Эксперименты показали, что результаты в Т-1-2 аналогичны данным, получаемым в зарубежных трубах. С 1927 года наша аэротруба стала обслуживать авиапромышленность, для чего в ЦАГИ была образована специальная секция аэродинамики самолета.

В довоенные годы под руководством выдающихся ученых ЦАГИ М.А. Лаврентьева, А.К. Мартынова, С.А. Чаплыгина, М.В. Келдыша, Л.И. Седова и А.Н. Туполева здесь проводили испытания таких моделей самолетов, как К-5, К-7, ДБ-3, И-1, И-5 и И-16.

— Проводились ли в советское время в трубе испытания каких-нибудь необычных объектов?

— Увы, многие данные утрачены: по официальной версии все довоенные материалы были утеряны во время перевозки их на барже по Волге в безопасный регион. Из экзотики — известно, что в трубе в прошлом испытывали модель вороны, живого лыжника-прыгуна с трамплина в постромках и автомобиль «Запорожец». Также мы случайно обнаружили в каком-то древнем шкафу материалы, согласно которым в Т-1-2 проводились испытания модели скульптуры В.И. Ленина, которой предполагалось увенчать Дворец Советов, запланированный на месте Храма Христа Спасителя.

В 50-х гг. прошлого века коллективы, которые возглавляли В.В. Белостоцкий и А.Б. Лотов, работали здесь над проектами экранопланов. Это была концепция советских ученых об использовании эффекта улучшения аэродинамических характеристик самолета при приближении к какой-то поверхности. Это был беспрецедентный проект и колоссальный масштаб исследований, проведенных в этой трубе, и подаривший миру такой грандиозный объект, который остальной частью человечества пока не освоен.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

— Для чего вообще необходимы испытания в аэродинамической трубе?

— Наши исследования позволяют, например, предотвратить нежелательные явления, связанные с ветровым воздействием на здания и сооружения и их взаимным влиянием в городской застройке. Явления аэродинамического характера, о которых мы предупреждаем, не обязательно возникают сразу — они могут обнаружить себя, допустим, через 50 лет. Но от этого они не становятся менее опасными.

 © Бионышева Елена/Сделано у нас

Например, первоначально комплекс «Федерация» Москва-Сити должен был представлять собой две трехсотметровые пирамиды треугольного сечения с 500-метровой лифтовой шахтой между ними. На научно-техническом совете Москомархитектуры Московского правительства я заявил, что нет более эффективного способа привести конструкцию шахты в катастрофические колебания, чем возвести спроектированную за рубежом такую аэродинамическую композицию. После этого в ЦАГИ были произведены эксперименты на подвижной модели, подтвердившие мою правоту, — и в результате лифтовая шахта построена не была.

 © Бионышева Елена/Сделано у нас

Но часто вопрос о проведении экспериментов встает не на ранних этапах проектирования и строительства, а уже в период сдачи или даже после окончания проекта. В большинстве случаев исправить связанные с аэродинамической неустойчивостью здания или сооружения проблемы можно путем установки специальных устройств — гасителей колебаний. Они работают по сходному с амортизатором в автомобиле принципу: в гасителе колеблется тяжелая масса в вязкой среде. Установленный на высотное сооружение гаситель вместе со зданием формирует другую колебательную систему. Наша задача — предоставить данные, которые помогут спроектировать устройства для конкретного случая.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

— А какие интересные испытания проводились здесь в последние годы?

— Отвечу так: практически все московские объекты выше 70 метров прошли проверку в ЦАГИ. У нас даже появилась импровизированная выставка из трех десятков моделей, которыми мы занимались в течение последних 10 лет. Они являются собственностью заказчиков и оставлены на временное хранение. Среди них, например, новое колесо обозрения, которое будет находится в парке ВДНХ. Это был непростой объект для исследований: колесо состояло из сотен элементов с разными аэродинамическими характеристиками, подобных аттракционов на всей планете единицы.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

Интересные результаты дали исследования Соборной мечети, построенной в Москве на Проспекте Мира. Ее модель с двумя башнями-минаретами установили в аэродинамической трубе, сообщив небольшую амплитуду колебаний одному из минаретов, помещенному на шарнире колебательной установки трубы. Было отмечено при определенном направлении ветра, что колебания не затухают, как ожидалось, а продолжаются с постоянной амплитудой. При увеличении амплитуды колебаний башня «захватывала» ее и не проявляла тенденции к затуханию. Аналогичные результаты получились и в следующие попытки. Таким образом, мы обнаружили новое явление, которому пока даже нет утвержденного названия.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

И, конечно, не могу не рассказать о скульптуре «Рабочий и колхозница». В момент создания — в начале 30-х годов — она в нашей аэродинамической трубе не испытывалась. Я полагаю, что это связано с запредельной скоростью, с которой ее создавали. Она делалась по технологиям, которые опережали авиационную технологию лет на тридцать. Так, стальная оболочка скульптуры смонтирована на стальном же пространственном каркасе, который каждым своим силовым элементом повторял скульптурную форму поверхности. По сравнению с прямыми стрингерами и круглыми (часто деревянными) шпангоутами фюзеляжа аэроплана тех лет — это было зримое будущее. В запястье левой руки Колхозницы размещался двухстепенной карданный шарнир, обеспечивающий гибкость узла. Дело в том, что сам монумент колебался на ветру с частотой 1 герц, а вот шарф Колхозницы, удерживаемый ее левой рукой — с частотой в несколько раз больше. И они, инженеры 30-х, это предвидели! Пока шарнир функционировал как положено, движения были состыкованы, но из-за отсутствия обслуживания в 90-е он просто заржавел, потерял подвижность и в результате шарф провис на 3 метра. В итоге скульптуру решили реставрировать. Тогда и подключился наш институт: мы провели обследование и воссоздали всю картину ветрового нагружения на скульптуру и ее элементы и кинематику ее колебаний.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

Напоследок хочу отметить, что сейчас у нас в ЦАГИ есть замысел превратить Т-2 в «ландшафтную» трубу, есть и соответствующие технические решения, так что мы готовы к новым вызовам и проектам.

 © Бионышева Елена/Сделано у нас

Фото: Алексей Клиндухов

Текст и фото: Бионышева Елена

Аэродинамическая труба — Большая советская энциклопедия

Аэродинами́ческая труба

Установка, создающая поток воздуха или газа для эксперимент, изучения явлений, сопровождающих обтекание тел. С помощью А. т. определяются силы, возникающие при полёте самолётов и вертолётов, ракет и космических кораблей, при движении подводных судов в погруженном состоянии; исследуются их устойчивость и управляемость; отыскиваются оптимальные формы самолётов, ракет, космических и подводных кораблей, а также автомобилей и поездов; определяются ветровые нагрузки, а также нагрузки от взрывных волн, действующие на здания и сооружения — мосты, мачты электропередач, дымовые трубы и т. п. В специальных А. т. исследуется нагревание и теплозащита ракет, космических кораблей и сверхзвуковых самолётов.

Опыты в А. т. основываются на принципе обратимости движения, согласно которому перемещение тела относительно воздуха (или жидкости) можно заменить движением воздуха, набегающего на неподвижное тело. Для моделирования движения тела в покоящемся воздухе необходимо создать в А. т. равномерный поток, имеющий в любых точках равные и параллельные скорости (равномерное поле скоростей), одинаковые плотность и температуру. Обычно в А. т. исследуется обтекание модели проектируемого объекта или его частей и определяются действующие на неё силы. При этом необходимо соблюдать условия, которые обеспечивают возможность переносить результаты, полученные для модели в лабораторных условиях, на полноразмерный натурный объект (см. Моделирование, Подобия теория). При соблюдении этих условий Аэродинамические коэффициенты для исследуемой модели и натурного объекта равны между собой, что позволяет, определив аэродинамический коэффициент в А. т., рассчитать силу, действующую на натуру (например, самолёт).

Прототип А. т. был создан в 1897 К. Э. Циолковским, использовавшим для опытов поток воздуха на выходе из центробежного вентилятора. В 1902 Н. Е. Жуковский построил А. т., в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/сек. Первые А. т. разомкнутой схемы были созданы Т. Стантоном в Национальной физической лаборатории в Лондоне в 1903 и Н. Е. Жуковским в Москве в 1906, а первые замкнутые А. т. — в 1907—1909 в Гёттингене Л. Прандтлем и в 1910 Т. Стантоном. Первая А. т. со свободной струей в рабочей части была построена Ж. Эйфелем в Париже в 1909. Дальнейшее развитие А. т. шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель), которая является одной из основных характеристик А. т.

В связи с развитием артиллерии, реактивной авиации и ракетной техники появляются сверхзвуковые А. т., скорость потока в рабочей части которых превышает скорость распространения звука. В аэродинамике больших скоростей скорость потока или скорость полёта летательных аппаратов характеризуется числом М = v/a (т. е. отношением скорости потока v к скорости звука а). В соответствии с величиной этого числа А. т. делят на 2 основные группы: дозвуковые, при М < 1, и сверхзвуковые, при М > 1.

Дозвуковые аэродинамические трубы. Дозвуковая А. т. постоянного действия (рис. 1) состоит из рабочей части 1, обычно имеющей вид цилиндра с поперечным сечением в форме круга или прямоугольника (иногда эллипса или многоугольника). Рабочая часть А. т. может быть закрытой или открытой (рис. 2, а и б), а если необходимо создать А. т. с открытой рабочей частью, статическое давление в которой не равно атмосферному, струю в рабочей части отделяют от атмосферы т. н. камерой Эйфеля (рис. 2) (высотной камерой). Исследуемая модель 2 (рис. 1) крепится державками к стенке рабочей части А. т. или к аэродинамическим весам 3. Перед рабочей частью расположено Сопло 4, которое создаёт поток газа с заданными и постоянными по сечению скоростью, плотностью и температурой (6 — спрямляющая решётка, выравнивающая поле скоростей). Диффузор 5 уменьшает скорость и соответственно повышает давление струи, выходящей из рабочей части. Компрессор (вентилятор) 7, приводимый в действие силовой установкой 8, компенсирует потери энергии струи; направляющие лопатки 9 уменьшают потери энергии воздуха, предотвращая появление вихрей в поворотном колене; обратный канал 12 позволяет сохранить значительную часть кинетической энергии, имеющейся в струе за диффузором. Радиатор 10 обеспечивает постоянство температуры газа в рабочей части А. т. Если в каком-либо сечении канала А. т. статическое давление должно равняться атмосферному, в нём устанавливают клапан 11.

Размеры дозвуковых А. т. колеблются от больших А. т. для испытаний натурных объектов (например, двухмоторных самолётов) до миниатюрных настольных установок.

А. т., схема которой приведена на рис. 1, относится к типу т. н. замкнутых А. т. Существуют также разомкнутые А. т., в которых газ к соплу подводится из атмосферы или специальных ёмкостей. Существенной особенностью дозвуковых А. т. является возможность изменения скорости газа в рабочей части за счёт изменения перепада давления.

Согласно теории подобия, для того чтобы аэродинамические коэффициенты у модели и натуры (самолёта, ракеты и т. п.) были равны, необходимо, кроме геометрического подобия, иметь одинаковые значения чисел М и Рейнольдса числа Re в А. т. и в полёте (Re = ρvl/μ, ρ — плотность среды, μ — динамич. вязкость, l — характерный размер тела). Чтобы обеспечить эти условия, энергетическая установка, создающая поток газа в А. т., должна обладать достаточной мощностью (мощность энергетической установки пропорциональна числу М, квадрату числа Re и обратно пропорциональна статическому давлению в рабочей части pc.

Сверхзвуковые аэродинамические трубы. В общих чертах схемы сверхзвуковой и дозвуковой А. т. аналогичны (рис. 1 и 3). Для получения сверхзвуковой скорости газа в рабочей части А. т. применяют т. н. сопло Лаваля, которое представляет собой сначала сужающийся, а затем расширяющийся канал. В сужающейся части скорость потока увеличивается и в наиболее узкой части сопла достигает скорости звука, в расширяющейся части сопла скорость становится сверхзвуковой и увеличивается до заданного значения, соответствующего числу М в рабочей части. Каждому числу М отвечает определённый контур сопла. Поэтому в сверхзвуковых А. т. для изменения числа М в рабочей части применяют сменные сопла или сопла с подвижным контуром, позволяющим менять форму сопла.

В диффузоре сверхзвуковой А. т. скорость газа должна уменьшаться, а давление и плотность возрастать, поэтому его делают, как и сопло, в виде сходящегося — расходящегося канала. В сходящейся части сверхзвуковая скорость течения уменьшается, а в некотором сечении возникает скачок уплотнения (Ударная волна), после которого скорость становится дозвуковой. Для дальнейшего замедления потока контур трубы делается расширяющимся, как у обычного дозвукового диффузора. Для уменьшения потерь диффузоры сверхзвуковых А. т. часто делают с регулируемым контуром, позволяющим изменять минимальное сечение диффузора в процессе запуска установки.

В сверхзвуковой А. т. потери энергии в ударных волнах, возникающих в диффузоре, значительно больше потерь на трение и вихреобразование. Кроме того, значительно больше потери при обтекании самой модели, поэтому для компенсации этих потерь сверхзвуковые А. т. имеют многоступенчатые компрессоры и более мощные силовые установки, чем дозвуковые А. т.

В сверхзвуковом сопле по мере увеличения скорости воздуха уменьшаются его температура Т и давление р, при этом относительная влажность воздуха, обычно содержащего водяные пары, возрастает, и при числе М — 1,2 происходит конденсация пара, сопровождающаяся образованием ударных волн — скачков конденсации, существенно нарушающих равномерность поля скоростей и давлений в рабочей части А. т. Для предотвращения скачков конденсации влага из воздуха, циркулирующего в А. т., удаляется в специальных осушителях 11.

Одним из основных преимуществ сверхзвуковых А. т., осуществляемых по схеме рис. 3, является возможность проведения опытов значительной продолжительности. Однако для многих задач аэродинамики это преимущество не является решающим. К недостаткам таких А. т. относятся: необходимость иметь энергетические установки большой мощности, а также трудности, возникающие при числах М > 4 вследствие быстрого роста требуемой степени сжатия компрессора. Поэтому широкое распространение получили т. н. баллонные А. т., в которых для создания перепада давлений перед соплом помещают баллоны высокого давления, содержащие газ при давлении 100 Мн/м2 (1000 кгс/см2), а за диффузором — вакуумные ёмкости (газгольдеры), откачанные до абсолютного давления 100—0,1 н/м2 (10-3—10-6 кгс/см2), или систему эжекторов (рис. 4).

Одной из основных особенностей А. т. больших чисел М (М > 5) является необходимость подогрева воздуха во избежание его конденсации в результате понижения температуры с ростом числа М. В отличие от водяных паров, воздух конденсируется без заметного переохлаждения. Конденсация воздуха существенно изменяет параметры струи, вытекающей из сопла, и делает её практически непригодной для аэродинамического эксперимента. Поэтому А. т. больших чисел М имеют подогреватели воздуха. Температура T0, до которой необходимо подогреть воздух, тем больше, чем больше число М в рабочей части А. т. и давление перед соплом p0. Например, для предотвращения конденсации воздуха в А. т. при числах М — 10 и p05 Мн/м2 (50 кгс/см2) необходимо подогревать воздух до абсолютной температуры T0 — 1000 К.

Развитие техники идёт в направлении дальнейшего увеличения скоростей полёта. Спускаемые космические аппараты «Восток» и «Восход» входят в атмосферу Земли с первой космической скоростью v1кос — 8 км/сек (т. е. М > 20). Космические корабли, возвращающиеся на Землю с Луны и др. планет, будут входить в атмосферу со второй космической скоростью v2кос ≥ 11 км/сек (М > 30). При таких скоростях полёта температура газа за ударной волной, возникающей перед летящим телом, превыщает 10000 К, молекулы азота и кислорода диссоциируют (распадаются на атомы), и становится существенной Ионизация атомов. Необходимо исследовать влияние этих процессов на силы, возникающие при обтекании тела, и тепловые потоки, поступающие к его поверхности. Для этого в А. т. необходимо получить не только натурные значения чисел М и Re, но и соответствующие температуры T0. Это привело к созданию новых типов А. т., работающих с газом, нагретым до высоких температур, значительно превышающих температуру, необходимую для предотвращения конденсации воздуха при данном числе М. К установкам этой группы относятся ударные трубы, импульсные установки, электродуговые установки и т. п.

Ударная труба (рис. 5, а) представляет собой ступенчатую цилиндрическую трубу, состоящую из двух секций — высокого 1 и низкого 2 давления, разделённых мембраной 3. В секции 1 содержится «толкающий» газ (обычно Не или Н), нагретый до высокой температуры и сжатый до давления p1. Секция низкого давления заполняется рабочим газом (воздухом) при низком давлении p2 Это состояние, предшествующее запуску А. т., соответствует на рис. 5, б времени t0. После разрыва мембраны 3 по рабочему газу начинает перемещаться ударная волна 4, которая сжимает его до давления р и повышает температуру. За ударной волной с меньшей скоростью двигается контактная поверхность 5, разделяющая толкающий и рабочий газы (момент времени t1). Давление и температура рабочего газа в объёме между ударной волной и контактной поверхностью постоянны. В дальнейшем ударная волна 4 пройдёт через сопло 6 и рабочую часть А. т. 7 в ёмкость 8, и в рабочей части установится сверхзвуковое течение с давлением p4 (момент времени t2).

Исследование обтекания газом модели 9 начинается в тот момент, когда ударная волна 4 пройдёт сечение, в котором расположена модель, и заканчивается, когда в это сечение придёт контактная поверхность. Поскольку скорость движения ударной волны в трубе 2 больше скорости контактной поверхности, очевидно, что длительность эксперимента в А. т. тем больше, чем больше длина «разгонной» трубы 2. В существующих ударных А. т. эта длина достигает 200—300 м.

Рассмотренный тип ударных А. т. даёт возможность получить температуры около 8000 К при времени работы порядка миллисекунд. Применяя ударные А. т. с несколькими мембранами, удаётся получить температуры до 18000 К.

Электродуговые А. т. Для решения многих задач аэродинамики можно ограничиться меньшими температурами, но требуется значительное время эксперимента, например при исследовании аэродинамического нагрева (См. Аэродинамический нагрев) или теплозащитных покрытий.

В электродуговых А. т. (рис. 6) воздух, подаваемый в форкамеру сопла, подогревается в электрической дуге до температуры ~6000 К. Дуга, образующаяся в кольцевом канале между охлаждаемыми поверхностями центрального электрода 1 и камеры 2, вращается с большой частотой магнитным полем, создаваемым индуктивной катушкой 7 (вращение дугового разряда необходимо для уменьшения эрозии электродов). А. т. этого типа позволяет получить числа М до 20 при длительности эксперимента в несколько сек. Однако давление в форкамере обычно не превышает 10 Мн/м2 (100 кгс/см2).

Большие давления в форкамере ~60 Мн/м2 (600 кгс/см2) и, соответственно, большие значения числа М можно получить в т. н. импульсных А. т., в которых для нагревания газа применяется искровой разряд батареи высоковольтных конденсаторов. температура в форкамере импульсной А. т. ~ 6000 К, время работы — несколько десятков мсек.

Недостатки установок этого типа — загрязнение потока продуктами эрозии электродов и сопла и изменение давления и температуры газа в процессе эксперимента.

Лит.: Пэнкхёрст Р. и Холдер Д., Техника эксперимента в аэродинамических трубах, пер. с англ., М., 1955; Закс Н. А., Основы экспериментальной аэродинамики, 2 изд., М., 1953; Хилтон У. Ф., Аэродинамика больших скоростей, пер. с англ., М., 1955; Современная техника аэродинамических исследований при гиперзвуковых скоростях, под ред. А. М. Крилла, пер. с англ., М., 1965; Исследование гиперзвуковых течений, под ред. Ф. Р. Риддела, пер. с англ., М., 1965.

М. Я. Юделович.

Аэродинамическая труба

Рис. 1. Дозвуковая аэродинамическая труба.

Аэродинамическая труба. Рис. 2

Рис. 2. Схемы рабочей части аэродинамической трубы (а — закрытая, б — открытая, в — открытая рабочая часть с камерой Эйфеля): 1 — модель; 2 — сопло; 3 — диффузор; 4 — струя газа, выходящего из сопла; 5 — камера Эйфеля; 6 — рабочая часть.

Аэродинамическая труба. Рис. 3

Рис. 3. Сверхзвуковая аэродинамическая труба: 1 — рабочая часть; 2 — модель; 3 — аэродинамические весы; 4 — сопло; 5 — диффузор; 6 — спрямляющие решётки; 7 — компрессор с двигателем ; 9 — обратный канал; 10 — теплообменник; 11 — осушитель воздуха.

Аэродинамическая труба. Рис. 4

Рис. 4. Две баллонные аэродинамические трубы с повышенным давлением на входе в сопло и с пониженным давлением на выходе из диффузора, создаваемым: а — двухступенчатым эжектором и б — вакуумным газгольдером; 1 — компрессор высокого давления; 2 — осушитель воздуха; 3 — баллоны высокого давления; 4 — дроссельный кран; 5 — ресивер сопла; 6 — сопло; 7 — модель; 8 — диффузор аэродинамической трубы; 9 — эжекторы; 10 — дроссельные краны; 11 — диффузор эжектора; 12 — быстродействующий кран; 13 — вакуумный газгольдер; 14 — вакуумный насос; 15 — подогреватель воздуха; 16 — радиатор.

Аэродинамическая труба. Рис. 5

Рис. 5. а — ударная аэродинамическая труба; б — график изменения давления в ударной трубе.

Аэродинамическая труба. Рис. 6

Рис. 6. Электродуговая аэродинамическая труба: 1 — центральный (грибообразный) электрод, охлаждаемый водой; 2 — стенки камеры, переходящие в сверхзвуковое сопло, охлаждаемые водой; 3 — рабочая часть с высотной камерой; 4 — модель; 5 — диффузор; 6 — дуговой разряд; 7 — индукционная катушка, вращающая дуговой разряд; I — контакты для подведения электрического тока дугового разряда; II — контакты для подведения электрического тока к индукционной катушке.

Источник: Большая советская энциклопедия на Gufo.me


Значения в других словарях

  1. Аэродинамическая труба — Экспериментальная установка для исследования явлений и процессов, сопровождающих обтекание тел потоком газа. В аэродинамической трубе экспериментально определяются действующие на ЛА аэродинамические силы и моменты… Авиационный словарь
  2. аэродинамическая труба — Установка для аэродинамических исследований летательных аппаратов, автомобилей, спортивных судов и т. п. Известно, что любое движущееся в воздухе тело испытывает сопротивление воздушной среды. И чем выше скорость, тем сопротивление больше. Техника. Современная энциклопедия
  3. АЭРОДИНАМИЧЕСКАЯ ТРУБА — АЭРОДИНАМИЧЕСКАЯ ТРУБА — установка, в которой создается воздушный поток для экспериментального изучения явлений, возникающих при обтекании воздухом твердых тел, главным образом летательных аппаратов и их частей. Большой энциклопедический словарь
  4. АЭРОДИНАМИЧЕСКАЯ ТРУБА — Установка, создающая поток воздуха или др. газа для эксперим. изучения явлений, сопровождающих обтекание тел. В А. т. проводятся эксперименты, позволяющие: определять силы, действующие на самолёты и вертолёты, ракеты и косм. Физический энциклопедический словарь
  5. АЭРОДИНАМИЧЕСКАЯ ТРУБА — АЭРОДИНАМИЧЕСКАЯ ТРУБА, камера, в которой модели разного масштаба и даже полноразмерные автомобили и летательные аппараты испытываются в управляемом воздушном потоке. Научно-технический словарь
Аэродинамическая труба. Рис. 6
Аэродинамическая труба — это… Что такое Аэродинамическая труба? Аэродинамическая труба СПбГУВК с открытой рабочей частью

Аэродинами́ческая труба́ — это экспериментальная установка, разработанная для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет, мостов, зданий и др.) потоком, а также для экспериментального изучения аэродинамических явлений.

Аэродинамическая труба состоит из одного или нескольких вентиляторов (или других устройств нагнетания воздуха), которые нагнетают воздух в трубу, где находится модель исследуемого тела, тем самым создаётся эффект движения тела в воздухе с большой скоростью (принцип обращения движения).

Аэродинамические трубы классифицируют по диапазону возможных скоростей потока (дозвуковые, трансзвуковые, сверхзвуковые, гиперзвуковые), размеру и типу рабочей части (открытая, закрытая), а также поджатию — соотношению площадей поперечных сечений сопла трубы и форкамеры. Также существуют отдельные группы аэродинамических труб:

  • Высокотемпературные — дополнительно позволяют изучать влияние больших температур и связанных с ними явлений диссоциации и ионизации газов.
  • Высотные — для исследования обтекания моделей разреженным газом (имитация полёта на большой высоте).
  • Аэроакустические — для исследования влияния акустических полей на прочность конструкции, работу приборов и т. п.

Исследование характеристик надводных и подводных частей корпуса судов приходится выполнять с использованием дублированных моделей, что позволяет удовлетворить условию непротекания по поверхности раздела сред. В качестве альтернативы возможно использование специального экрана, имитирующего поверхность воды.

Центральный аэродинамический институт имеет 60 различных аэродинамических труб для скоростей от 10 м/с до M=25, некоторые из них (СМГДУ с магнитогидродинамическим разгоном до 8000 м/с, УСГД с давлением торможения 5000 атм) уникальны[1].

«Типовые» эксперименты

Импеллер (рабочее колесо) аэродинамической трубы СПбГУВК Дублированная модель надводной части судна в аэродинамической трубе СПбГУВК
  • Измерение давлений по поверхности тела.

Для исследования необходимо изготовить дренированную модель тела — в поверхности модели выполняются отверстия, которые соединяются шлангами с манометрами.

В гидромеханике доказано, что давление без изменений передается поперек пограничного слоя, что позволяет рассчитать сопротивление давления тела по результатам измерения давлений.

  • Измерение сил и моментов, действующих на тело

Для исследования необходимо подвесить модель на многокомпонентном динамометре (Аэродинамические весы) либо на системе растяжек, позволяющей измерять натяжение каждой растяжки. Пересчет сил и моментов, действующих на тело осуществляется в соответствии с критерием подобия Рейнольдса.

  • Визуализация течений

Для решения этой задачи используют шерстяные нити (шелковинки), наклеенные на поверхность модели либо закрепленные на проволочной сетке. Возможна постановка эксперимента с подачей цветного дыма в характерные зоны потока, но продолжительность такого эксперимента (в трубах с повторной циркуляцией воздуха), как правило, весьма мала вследствие общего задымления всего аэродинамического тракта.

История

Фрэнсис Герберт Уэнхем (Francis Herbert Wenham), член Совета Королевского авиационного общества Великобритании, создал первую закрытую аэродинамическую трубу в 1871 году.

Первую аэродинамическую трубу в России построил военный инженер В. А. Пашкевич в 1873 году, она использовалась исключительно для опытов в области баллистики.

В 1897 году К. Э. Циолковский построил прототип аэродинамической трубы собственной конструкции, использовав поток воздуха на выходе из центробежного вентилятора, и впервые в России применил этот агрегат для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет воздушным потоком).

Под руководством Н. Е. Жуковского при механическом кабинете Московского университета в 1902 году была сооружена аэродинамическая труба, в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/с.

Первая аэродинамическая труба разомкнутой схемы была создана Т.Стантоном в Национальной физической лаборатории в Лондоне в 1903 году., вторая — Н. Е. Жуковским в Москве в 1906 году.

Первая замкнутая аэродинамическая труба построена в 1909 году в Гёттингене Людвигом Прандтлем, вторая — в 1910 году Т. Стантоном.

Первая аэродинамическая труба со свободной струей в рабочей части была построена Гюставом Эйфелем в Париже на Марсовом поле в 1909 году.

Дальнейшее развитие шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель).

В 1934 году в районе Берлина построена Большая аэродинамическая труба (Адлерсхоф) для аэродинамического моделирования. В трубе диаметром от 8,5 до 12 м размещались части самолётов и изучалось воздействие на них горизонтальных воздушных потоков. Особенностью данной аэродинамической трубы является бетонное сооружение «Zeiss-Dywidag» с толщиной стенок всего 8 сантиметров. В настоящее время сохраняется как памятник промышленной архитектуры в составе Аэродинамического парка.

Впервые человек взлетел в вертикальной аэродинамической трубе в 1964 году на воздушной базе Райт-Патерсон, Огайо, США.

См. также

Примечания

Литература

  • Гофман А. Д. Движительно-рулевой комплекс и маневрирование судна. — Л.: Судостроение, 1988.
  • Справочник по теории корабля / Под ред. Я. И. Войткунского. В 3-х т. — Л.: Судостроение, 1987. — Т.1
  • Физическая энциклопедия / Редкол.: А. М. Прохоров (гл. ред.) и др. — М.: Советская энциклопедия, 1988, — Т.1 — С. 161—164 — 704 с., ил. — 100 000 экз.

Ссылки

это… Основы и особенности аэродинамики

Аэродинамика – это область знания, изучающая движения потоков воздуха и их воздействия на твердые тела. Является подразделом гидро- и газодинамики. Исследования в этой области восходят к глубокой древности, ко времени изобретения стрел и планирующих копий, позволявших дальше и точнее посылать снаряд в цель. Однако потенциал аэродинамики полностью был раскрыт с изобретением аппаратов тяжелее воздуха, способных летать либо планировать на значительные расстояния.

аэродинамика это

С древних времен

Открытие законов аэродинамики в 20 веке способствовало фантастическому скачку во многих областях науки и техники, особенно в транспортной сфере. На ее достижениях созданы современные летательные аппараты, позволившие сделать общедоступным фактически любой уголок планеты Земля.

Первые упоминания о попытке покорения неба встречаются в греческом мифе об Икаре и Дедале. Отец с сыном соорудили крылья, похожие на птичьи. Это указывает на то, что еще тысячелетия назад люди задумывались о возможности оторваться от земли.

Очередной всплеск интереса к сооружению летательных аппаратов возник в эпоху Возрождения. Страстный исследователь Леонардо да Винчи много времени посвятил этой проблеме. Известны его записи, в которых объяснены принципы работы простейшего вертолета.

основы аэродинамики

Новая эпоха

Глобальный прорыв в науке (и аэронавтике в частности) совершил Исаак Ньютон. Ведь в основе аэродинамики лежит всеобъемлющая наука механика, родоначальником которой стал английский ученый. Ньютон первым рассмотрел воздушную среду как конгломерат частиц, которые, набегая на препятствие, либо прилипают к нему, либо упруго отражаются. В 1726 году он представил публике теорию сопротивления воздуха.

Впоследствии выяснилось, что среда действительно состоит из мельчайших частиц – молекул. Отражающую способность воздуха рассчитывать научились достаточно точно, а эффект «прилипания» считали несостоятельным предположением.

Удивительно, но данная теория нашла практическое применение спустя столетия. В 60-х, на заре космической эры, советские конструкторы столкнулись с проблемой расчета аэродинамического сопротивления спускаемых аппаратов «затупленной» сферической формы, при приземлении развивающих гиперзвуковые скорости. Из-за отсутствия мощных ЭВМ вычислить данный показатель было проблематично. Неожиданно выяснилось, что достаточно точно рассчитать величину сопротивления и даже распределение давления по лобовой части можно по простой формуле Ньютона, касающейся эффекта «прилипания» частиц к летящему объекту.

Развитие аэродинамики

Основатель гидродинамики Даниэль Бернулли описал в 1738 году фундаментальную взаимосвязь между давлением, плотностью и скоростью для несжимаемого потока, известную сегодня как принцип Бернулли, который также применителен к расчетам силы аэродинамического подъема. В 1799 году сэр Джордж Кэли стал первым человеком, который идентифицировал четыре аэродинамических силы полета (вес, подъемную силу, сопротивление и тягу), а также отношения между ними.

В 1871 году Фрэнсис Герберт Уэнам создал первую аэродинамическую трубу, позволяющую точно измерять аэродинамические силы. Неоценимые научные теории разработаны Жаном Ле Рондом Даламбером, Густавом Кирхгофом, лордом Рэлеем. В 1889 году Чарльз Ренард, французский инженер по аэронавтике, стал первым человеком, который научно рассчитал мощность, необходимую для устойчивого полета.

аэродинамика в действии

От теории к практике

В 19 веке изобретатели взглянули на крыло с научной точки зрения. И благодаря исследованиям механизма полета птиц была изучена аэродинамика в действии, которую позже применили к искусственным летательным аппаратам.

Особо в исследованиях механики крыла преуспел Отто Лилиенталь. Немецким авиаконструктором создано и испытано 11 типов планеров, в том числе биплан. Им же совершен первый полет на аппарате тяжелее воздуха. За относительно недолгую жизнь (46 лет) он совершил порядка 2000 полетов, постоянно совершенствуя конструкцию, которая скорее напоминала дельтаплан, чем самолет. Он погиб во время очередного полета 10 августа 1896 года, став и первопроходцем аэронавтики, и первой жертвой авиакатастрофы. Кстати, один из планеров немецкий изобретатель лично передал пионеру в изучении аэродинамики самолетов Жуковскому Николаю Егоровичу.

Жуковский не просто экспериментировал с конструкциями самолетов. В отличие от многих энтузиастов того времени, прежде всего он рассматривал поведение воздушных потоков с научной точки зрения. В 1904 году он основал первый в мире аэродинамический институт в Качино под Москвой. С 1918 года возглавлял ЦАГИ (Центральный аэрогидродинамический институт).

закон аэродинамики

Первые самолеты

Аэродинамика – это наука, позволившая человеку покорить небо. Без ее изучения было бы невозможно строить летательные аппараты, стабильно перемещающиеся в воздушных потоках. Первый самолет в привычном нам понимании изготовили и подняли в воздух 7 декабря 1903 года братья Райт. Однако этому событию предшествовала тщательная теоретическая работа. Американцы много времени посвятили отладке конструкции планера в аэродинамической трубе собственной разработки.

Во время первых полетов Фредерик В. Ланчестер, Мартин Вильгельм Кутта и Николай Жуковский выдвинули теории, которые объясняли циркуляцию воздушных потоков, создающих подъемную силу. Кутта и Жуковский продолжили разработку двумерной теории крыла. Людвигу Прандтлу приписывают развитие математической теории тонких аэродинамических и подъемных сил, а также работу с пограничными слоями.

Проблемы и решения

Важность аэродинамики самолетов возрастала по мере увеличения их скоростей. Конструкторы начали сталкиваться с проблемами, связанными со сжатием воздуха со скоростью, близкой или большей, чем скорость звука. Различия в потоках при таких условиях привели к проблемам управления воздушным судном, увеличению сопротивления из-за ударных волн и угрозе разрушения конструкции из-за аэроупругого флаттера. Отношение скорости потока к скорости звука было названо числом Маха по имени Эрнста Маха, который одним из первых исследовал свойства сверхзвукового потока.

Уильям Джон Маккуорн Ренкин и Пьер Анри Гугониот независимо друг от друга разработали теорию свойств течения воздуха до и после ударной волны, в то время как Якоб Акерет провел начальную работу по вычислению подъема и сопротивления сверхзвуковых аэродинамических поверхностей. Теодор фон Карман и Хью Латимер Драйден ввели термин «околозвуковой» для описания скоростей на границе 1 Маха (965-1236 км/час), когда сопротивление быстро растет. Впервые звуковой барьер был преодолен в 1947 году на самолете Bell X-1.

аэродинамика самолета

Основные характеристики

Согласно законам аэродинамики, для обеспечения полета в атмосфере земли любого аппарата важно знать:

  • Аэродинамическое сопротивление (ось X), оказываемое потоками воздуха на объект. Исходя из этого параметра подбирается мощность силовой установки.
  • Подъемную силу (ось Y), обеспечивающую набор высоты и позволяющую аппарату лететь горизонтально к поверхности земли.
  • Моменты аэродинамических сил по трем осям координат, действующих на летящий объект. Наиболее важным является момент боковой силы по оси Z (Mz), направленной поперек самолета (условно вдоль линии крыла). Он определяет степень продольной устойчивости (будет ли аппарат «нырять» или задирать нос вверх при полете).

Классификация

Аэродинамические характеристики классифицируются по условиям и свойствам воздушного потока, включая скорость, сжимаемость и вязкость. Внешняя аэродинамика – это исследование потока вокруг твердых объектов различной формы. Примерами являются оценка подъема и вибраций самолета, а также ударных волн, которые образуются перед носом ракеты.

Внутренняя аэродинамика – это исследование воздушного потока, перемещающегося через отверстия (проходы) в твердых объектах. Например, она охватывает изучение потоков через реактивный двигатель.

Аэродинамические показатели также могут быть классифицированы в зависимости от скорости потока:

  • Дозвуковой называют скорость, меньшую скорости звука.
  • Околозвуковой (трансзвуковой) – если присутствуют скорости как ниже, так и выше скорости звука.
  • Сверхзвуковой – когда скорость потока больше скорости звука.
  • Гиперзвуковая – скорость потока намного больше скорости звука. Обычно под этим определением подразумевают скорости с числами Маха выше 5.

Аэродинамика вертолета

Если принцип полета самолета основан на подъемной силе при поступательном движении, оказываемой на крыло, то вертолет как бы сам создает подъемную силу за счет вращения лопастей в режиме осевого обдува (то есть без поступательной скорости). Благодаря данной особенности геликоптер способен зависать в воздухе на месте и совершать энергичные маневры вокруг оси.

аэродинамика вертолета

Другие области применения

Естественно, аэродинамика применима не только к летательным аппаратам. Сопротивление воздуха испытывают все объекты, движущиеся в пространстве в газовой и жидкой среде. Известно, что водные обитатели – рыбы и млекопитающие – обладают обтекаемыми формами. На их примере можно проследить аэродинамику в действии. Ориентируясь на животный мир, люди также делают водный транспорт заостренной либо каплевидной формы. Это касается кораблей, катеров, подводных лодок.

лучшая аэродинамика

Значительное сопротивление воздуха испытывают транспортные средства: оно возрастает по мере увеличения скорости. Для достижения лучшей аэродинамики автомобилям придают обтекаемую форму. Особенно это актуально для спорткаров.

АЭРОДИНАМИЧЕСКАЯ ТРУБА • Большая российская энциклопедия

АЭРОДИНАМИ́ЧЕСКАЯ ТРУБА́, экс­пе­рим. ус­та­нов­ка для ис­сле­до­ва­ния яв­ле­ний и про­цес­сов, со­про­во­ж­даю­щих об­те­ка­ние тел по­то­ком га­за (обыч­но воз­ду­ха). Ис­сле­до­ва­ния в А. т. ос­но­ва­ны на прин­ци­пе об­ра­ти­мо­сти дви­же­ния, со­глас­но ко­то­ро­му пе­ре­ме­ще­ние те­ла в не­под­виж­ном воз­ду­хе мо­жет быть за­ме­не­но дви­же­ни­ем воз­ду­ха от­но­си­тель­но не­под­виж­но­го те­ла. Экс­пе­ри­мен­ты в А. т. про­во­дят, как пра­ви­ло, на гео­мет­ри­че­ски по­доб­ных мо­де­лях, ре­же на са­мих ори­ги­на­лах. В А. т. экс­пе­ри­мен­таль­но оп­ре­де­ля­ют дей­ст­вую­щие на те­ло аэ­ро­ди­на­мич. си­лы и мо­мен­ты, ис­сле­ду­ют рас­пре­де­ле­ние дав­ле­ний и темп-ры по его по­верх­но­сти, ви­зуа­ли­зи­ру­ют про­цесс об­те­ка­ния те­ла по­то­ком, изу­ча­ют аэ­ро­уп­ру­гость и др.

А. т. со­дер­жит ра­бо­чую часть – пря­мо­уголь­ную или ци­лин­д­рич. ка­ме­ру, где раз­ме­ща­ет­ся мо­дель ис­сле­дуе­мо­го объ­ек­та, и ком­плекс уст­ройств, по­сред­ст­вом ко­то­рых в ра­бо­чей час­ти соз­да­ёт­ся рав­но­мер­ный, од­но­род­ный по­ток с за­дан­ны­ми ско­ро­стью, плот­но­стью и темп-рой га­за. По спо­со­бу об­ра­зо­ва­ния по­то­ка А. т. под­раз­де­ля­ют на ком­прес­сор­ные не­пре­рыв­но­го дей­ст­вия и бал­лон­ные; по ком­по­нов­ке кон­ту­ра (пу­ти дви­же­ния по­то­ка) – на замк­ну­тые и ра­зомк­ну­тые. В ком­прес­сор­ных А. т. по­ток га­за соз­даёт­ся ком­прес­со­ром; они име­ют вы­со­кий кпд и удоб­ны в экс­плуа­та­ции, но для них тре­бу­ют­ся мощ­ные ком­прес­со­ры с боль­шим рас­хо­дом га­за. В бал­лонных А. т. газ под дав­ле­ни­ем ис­те­ка­ет из бал­ло­нов; та­кие А. т. про­ще ком­прес­сор­ных по кон­ст­рук­ции, но ме­нее эко­но­мич­ны из-за по­те­ри час­ти энер­гии по­то­ка при его ре­гу­ли­ро­ва­нии, кро­ме то­го, про­дол­жи­тель­ность их ра­бо­ты (от де­сят­ков се­кунд до неск. ми­нут) ог­ра­ни­че­на за­па­сом газa в бал­ло­нах. Замк­ну­тые А. т. по срав­не­нию с ра­зомк­ну­ты­ми име­ют бо­лее вы­со­кий кпд (за счёт ис­поль­зо­ва­ния зна­чит. час­ти ки­не­тич. энер­гии, ос­тав­шей­ся в га­зо­вом по­то­ке по­сле его про­хо­ж­де­ния че­рез ра­бо­чую часть тру­бы), но и боль­шие раз­ме­ры.

В за­ви­си­мо­сти от реа­ли­зуе­мо­го диа­па­зо­на Ма­ха чи­сел ($M$) раз­ли­ча­ют А. т. доз­ву­ко­вые ($M=$ 0,15–0,7), транс­зву­ко­вые ($M=$ 0,7–1,3), сверх­зву­ко­вые ($M=$ 1,3–5) и ги­пер­зву­ко­вые ($M=$ 5–25).

Рис. 1. Схема дозвуковой компрессорной аэродинамической трубы: 1 – хонейкомб; 2 – сетки; 3 – форкамера; 4 – конфузор; 5 – направление потока; 6 – рабочая часть с мо…

В доз­ву­ко­вых А. т. (рис. 1) ис­сле­ду­ют аэ­ро­ди­на­мич. ха­рак­те­ри­сти­ки доз­ву­ко­вых са­мо­лё­тов, вер­то­лё­тов, а так­же ха­рак­те­ри­сти­ки сверх­зву­ко­вых са­мо­лё­тов на взлёт­но-по­са­доч­ных ре­жи­мах; с их по­мо­щью изу­ча­ют ха­рак­тер об­те­ка­ния воз­душ­ным по­то­ком ав­то­мо­би­лей и др. на­зем­ных транс­порт­ных средств, зда­ний, мос­тов, ба­шен и др. объ­ек­тов. Ра­бо­чая часть та­ких А. т. обыч­но име­ет вид ци­лин­д­ра с по­пе­реч­ным се­че­ни­ем в фор­ме кру­га, пря­мо­уголь­ни­ка или эл­лип­са. Пе­ред ра­бо­чей ча­стью на­хо­дят­ся фор­ка­ме­ра и со­пло – кон­фу­зор, обес­пе­чива­ю­щие вы­со­кую рав­но­мер­ность воз­душ­но­го по­то­ка. В на­ча­ле фор­ка­ме­ры сто­ит ре­шёт­ка из ка­либ­ро­ван­ных тру­бок для уст­ра­не­ния ско­сов по­то­ка и раз­мель­че­ния круп­ных вих­рей – хо­ней­комб. За ре­шёт­кой рас­по­ла­га­ют­ся сет­ки, вы­рав­ни­ваю­щие ско­ро­сти в по­пе­реч­ном се­че­нии по­то­ка и умень­шаю­щие тур­бу­лент­ные пуль­са­ции. Из ра­бо­чей час­ти че­рез диф­фу­зор и ко­ле­на с по­во­рот­ны­ми ло­пат­ка­ми, умень­шаю­щи­ми по­те­ри энер­гии, по­ток по­сту­па­ет в ком­прес­сор. Да­лее рас­по­ла­га­ют­ся об­рат­ный ка­нал с диф­фу­зо­ром, ко­ле­на по­во­рот­ных ло­па­ток и воз­ду­хо­ох­ла­ди­тель, под­дер­жи­ваю­щий по­сто­ян­ную темп-ру га­за в ра­бо­чей час­ти. Эл­лип­тич. се­че­ние ра­бо­чей час­ти круп­ней­шей в Рос­сии до­зву­ко­вой А. т. име­ет раз­ме­ры 12×24 м2. Мощ­ность ком­прес­со­ров доз­ву­ко­вых А. т. – от со­тен кВт до неск. де­сят­ков МВт.

Рис. 2. Схема баллонной трансзвуковой эжекторной аэродинамической трубы: 1 – хонейкомб; 2 – сетки; 3 – форкамера; 4 – конфузор; 5 – перфорированная рабочая часть с модель…

Транс­зву­ко­вая ком­прес­сор­ная А. т. по схе­ме ана­ло­гич­на доз­ву­ко­вой. Для реа­ли­за­ции не­пре­рыв­но­го пе­ре­хо­да че­рез ско­рость зву­ка в ней ис­поль­зу­ет­ся до­зву­ко­вое со­пло и ра­бо­чая часть с ще­ле­вы­ми или пер­фо­ри­ро­ван­ны­ми стен­ка­ми; под­би­рая фор­му и раз­мер пер­фо­ра­ции, мож­но пре­дот­вра­тить от­ра­же­ние от сте­нок волн сжа­тия и раз­ре­же­ния, воз­ни­каю­щих при об­те­ка­нии мо­дели. Пром. транс­зву­ко­вые А. т. име­ют по­пе­реч­ные раз­ме­ры ра­бо­чей час­ти до 3 м, мощ­ность ком­прес­со­ров дос­ти­га­ет 100 МВт и бо­лее. В бал­лон­ных транс­зву­ко­вых А. т. для соз­да­ния тре­буе­мо­го га­зо­во­го по­то­ка при­ме­ня­ют эжек­то­ры (рис. 2).

Рис. 3. Схема сверхзвуковой баллонной аэродинамической трубы: 1 – баллонсо сжатым воздухом; 2 – трубопровод; 3 – регулирующий дроссель; 4 – выравнивающие сетки; 5 – хоней…

В сверх­зву­ко­вых А. т. для по­лу­че­ния тре­буе­мых ско­ро­стей га­за ис­поль­зу­ют сверх­зву­ко­вое со­пло (т. н. со­пло Ла­ва­ля), со­стоя­щее из су­жаю­щей­ся (доз­ву­ко­вой) и рас­ши­ряю­щей­ся (сверх­зву­ко­вой) час­тей; в ми­ни­маль­ном (кри­ти­че­ском) се­че­нии со­пла ско­рость га­за рав­на ско­рости зву­ка. Чис­ло $M$, по­лу­чае­мое в ра­бо­чей час­ти, оп­ре­де­ля­ет­ся от­но­ше­ни­ем пло­ща­дей се­че­ния ра­бо­чей час­ти и кри­тич. се­че­ния со­пла. Тор­мо­же­ние сверх­зву­ко­во­го по­то­ка по­сле ра­бо­чей час­ти со­про­во­ж­да­ет­ся вол­но­вы­ми по­те­ря­ми пол­но­го дав­ле­ния, свя­зан­ны­ми с об­ра­зо­вани­ем скач­ков уп­лот­не­ния. Мощ­но­сти ком­прес­со­ров круп­ных сверх­зву­ко­вых А. т. с ха­рак­тер­ны­ми раз­ме­ра­ми по­пе­реч­но­го се­че­ния ра­бо­чей час­ти 1,5 × 2,5 м2 со­став­ля­ют 50–100 МВт. В не­замк­ну­той пря­мо­точ­ной бал­лон­ной сверх­зву­ко­вой А. т. (рис. 3) нет об­рат­но­го ка­на­ла, за­дан­ное дав­ле­ние в фор­ка­ме­ре (по ме­ре ис­те­че­ния га­за из бал­ло­нов) под­дер­жи­ва­ет­ся с по­мо­щью ре­гу­ли­рую­ще­го дрос­се­ля.

Мо­де­ли­ро­ва­ние ги­пер­зву­ко­во­го по­лё­та тре­бу­ет вос­про­из­ве­де­ния в А. т. дав­ле­ния тор­мо­же­ния до со­тен МПа и темп-ры тор­мо­же­ния до 10К. При чис­ле МO 4,5 воз­дух в А. т. не­об­хо­ди­мо на­гре­вать для пре­дот­вра­ще­ния его кон­ден­са­ции, от­че­го су­ще­ст­вен­но из­ме­ня­ют­ся свой­ст­ва по­то­ка, вы­те­каю­ще­го из со­пла, и он ста­но­вит­ся прак­ти­че­ски не­при­год­ным для про­ве­де­ния аэ­ро­ди­на­мич. экс­пе­ри­мен­та. Обыч­но ис­сле­до­ва­ния ги­пер­зву­ко­вых ЛА про­во­дят на ком­плек­се экс­пе­рим. ус­та­но­вок, по­сколь­ку не су­ще­ст­ву­ет А. т., ко­то­рая од­на обес­пе­чи­ла бы все не­об­ходи­мые для мо­де­ли­ро­ва­ния та­ко­го по­лё­та ус­ло­вия.

Рис. 4. Схема баллонной гиперзвуковой аэродинамической трубы: 1 – баллонс высоким давлением; 2 – трубопровод; 3 – регулирующий дроссель; 4 – подогреватель; 5 – форкамерас…

Ги­пер­зву­ко­вые бал­лон­ные А. т. «клас­сич. ти­па» по­доб­ны сверх­зву­ко­вым бал­лон­ным А. т. со вре­ме­нем дей­ст­вия по­ряд­ка де­сят­ков се­кунд. В та­ких тру­бах по­дог­рев воз­ду­ха осу­ще­ст­в­ля­ет­ся в оми­че­ских, элек­тро­ду­го­вых или кау­пер­ных по­дог­ре­ва­те­лях. Мощ­ность по­дог­ре­ва­те­лей для труб с се­че­ни­ем ра­бо­чей час­ти 1 м2 cоставляет бо­лее 10 MBт. Макс. давлениe в А. т. с ду­го­вым по­до­гре­ва­телем по­ряд­ка 20 МПа, что по­зво­ля­ет мо­де­ли­ро­вать по­лёт ги­пер­зву­ко­вых ЛА толь­ко на боль­ших вы­со­тах. Боль­шой пе­ре­пад дав­ле­ний, не­об­хо­ди­мый для ги­пер­зву­ко­вых А. т., обес­пе­чи­ва­ет­ся сис­те­мой эжек­то­ров или ва­ку­ум­ной ём­ко­стью (рис. 4).

Ряд важ­ней­ших осо­бен­но­стей ги­пер­зву­ко­во­го по­лё­та мо­де­ли­ру­ет­ся в раз­лич­ных спец. га­зо­ди­на­мич. ус­та­нов­ках. Для ис­сле­до­ва­ний при боль­ших дав­ле­ни­ях тор­мо­же­ния и на­тур­ных Рей­нольд­са чис­лах ши­ро­ко при­ме­ня­ют удар­ные и им­пульс­ные А. т. со вре­ме­нем дей­ст­вия 0,005–0,1 с. Те­п­ло­за­щит­ные по­кры­тия ис­сле­ду­ют в те­п­ло­вых А. т. с элек­тро­ду­го­вы­ми по­дог­ре­ва­те­ля­ми. По­лё­ты на очень боль­ших вы­со­тах мо­де­ли­ру­ют в ва­ку­умных А. т., обес­пе­чи­ваю­щих дав­ле­ние по­ряд­ка 10–3 Па и дли­тель­ность экс­пе­ри­мен­та до 1 ча­са. Аэ­ро­аку­стич. А. т. пред­на­зна­че­ны для ис­сле­до­ва­ния влия­ния аку­стич. по­лей на проч­ность кон­ст­рук­ции изу­чае­мо­го объ­ек­та, ра­бо­ту при­бор­ных от­се­ков и др. От обыч­ных А. т. они от­ли­ча­ют­ся тем, что их ра­бо­чая часть за­щи­ще­на от внеш­них шу­мов (ра­бо­таю­щих си­ло­вых ус­та­но­вок и вен­ти­ля­то­ров А. т.), а её стен­ки по­кры­ты ма­те­риа­лом, по­гло­щаю­щим зву­ко­вые вол­ны, воз­ни­каю­щие при об­те­ка­нии мо­де­ли и ра­бо­те ус­та­нов­лен­ных на ней дви­га­те­лей.

Управ­ле­ние А. т. и об­ра­бот­ка дан­ных, по­лу­чае­мых в хо­де экс­пе­ри­мен­тов с на­тур­ны­ми объ­ек­та­ми или их мо­де­ля­ми, осу­ще­ст­в­ля­ет­ся с по­мо­щью ЭВМ.

По­яв­ле­ние и раз­ви­тие А. т. тес­но свя­за­но с раз­ви­ти­ем авиа­ции. Пер­вые А. т. по­строе­ны в 1871 В. А. Паш­ке­ви­чем в Рос­сии и Ф. Уэн­хе­мом в Ве­ли­ко­бри­та­нии, не­сколь­ко позд­нее К. Э. Ци­ол­ков­ским (1897), брать­я­ми У. и О. Райт (1901), Н. Е. Жу­ков­ским (1902) и др. В 1920–30-х гг. раз­ви­тие А. т. шло в осн. по пу­ти уве­ли­че­ния их мощ­но­сти и раз­ме­ров ра­бо­чей час­ти. В 1925 в ЦАГИ вве­де­на в дей­ст­вие круп­ней­шая для то­го вре­ме­ни А. т. С сер. 1940-х гг. на­ча­ла бы­ст­ры­ми тем­па­ми раз­ви­вать­ся ре­ак­тив­ная авиа­ция, что об­ус­ло­ви­ло соз­да­ние круп­ных транс­зву­ко­вых и сверх­зву­ко­вых А. т. В 1946 в ЦАГИ соз­да­на пер­вая в ми­ре транс­зву­ко­вая А. т. с пер­фо­ри­ро­ван­ной ра­бо­чей ча­стью, обес­пе­чив­шая прин­ци­пи­аль­но но­вые воз­мож­но­сти для про­ве­де­ния ис­сле­до­ва­ний в об­лас­ти пе­ре­хо­да че­рез ско­рость зву­ка. Раз­ви­тие ги­пер­зву­ко­вых А. т. и соз­да­ние спец. ги­пер­зву­ко­вых га­зо­ди­на­мич. ус­та­но­вок свя­за­но с по­яв­ле­ни­ем в 1960-х гг. бал­ли­стич. ра­кет и спус­кае­мых кос­мич. ап­па­ра­тов. С це­лью уве­ли­че­ния чи­сел Рей­нольд­са в А. т. для при­бли­же­ния к на­тур­ным зна­че­ни­ям в 1980-е гг. бы­ла реа­ли­зо­ва­на кон­цеп­ция крио­ген­ной аэ­ро­ди­на­мич. тру­бы.

Аэродинамическая труба — Википедия

Аэродинамическая труба СПбГУВК с открытой рабочей частью

Аэродинами́ческая труба́ — это техническое устройство, предназначенное для моделирования воздействия среды на движущиеся в ней тела. Применение труб в аэродинамике базируется на принципе обратимости движений и теории подобия физических явлений. Объектами испытаний в аэродинамических трубах являются модели натурных летательных аппаратов или их элементов (геометрически подобные, упруго подобные, термически подобные и т. д.), натурные объекты или их элементы, образцы материалов (унос материалов, каталитичность поверхности и т. д.).

Аэродинамическая труба состоит из одного или нескольких вентиляторов (или других устройств нагнетания воздуха), которые нагнетают воздух в трубу, где находится модель исследуемого тела, тем самым создаётся эффект движения тела в воздухе с большой скоростью (принцип обращения движения).

Аэродинамические трубы классифицируют по диапазону возможных скоростей потока (дозвуковые, трансзвуковые, сверхзвуковые, гиперзвуковые), размеру и типу рабочей части (открытая, закрытая), а также поджатию — соотношению площадей поперечных сечений сопла трубы и форкамеры. Также существуют отдельные группы аэродинамических труб:

  • Высокотемпературные — дополнительно позволяют изучать влияние больших температур и связанных с ними явлений диссоциации и ионизации газов.
  • Высотные — для исследования обтекания моделей разреженным газом (имитация полёта на большой высоте).
  • Аэроакустические — для исследования влияния акустических полей на прочность конструкции, работу приборов и т. п.

Исследование характеристик надводных и подводных частей корпуса судов приходится выполнять с использованием дублированных моделей, что позволяет удовлетворить условию непротекания по поверхности раздела сред. В качестве альтернативы возможно использование специального экрана, имитирующего поверхность воды.

Центральный аэродинамический институт имеет 60 различных аэродинамических труб для скоростей от 10 м/с до M=25, некоторые из них (СМГДУ с магнитогидродинамическим разгоном до 8000 м/с, УСГД с давлением торможения 5000 атм) уникальны[1].

«Типовые» эксперименты

Импеллер (рабочее колесо) аэродинамической трубы СПбГУВК Дублированная модель надводной части судна в аэродинамической трубе СПбГУВК
  • Измерение давлений по поверхности тела.

Для исследования необходимо изготовить дренированную модель тела — в поверхности модели выполняются отверстия, которые соединяются шлангами с манометрами.

В гидромеханике доказано, что давление без изменений передается поперек пограничного слоя, что позволяет рассчитать сопротивление давления тела по результатам измерения давлений.

  • Измерение сил и моментов, действующих на тело

Для исследования необходимо подвесить модель на многокомпонентном динамометре (Аэродинамические весы) либо на системе растяжек, позволяющей измерять натяжение каждой растяжки. Пересчет сил и моментов, действующих на тело, осуществляется в соответствии с критерием подобия Рейнольдса.

  • Визуализация течений

Для решения этой задачи используют шерстяные нити (шелковинки), наклеенные на поверхность модели либо закрепленные на проволочной сетке. Возможна постановка эксперимента с подачей цветного дыма в характерные зоны потока, но продолжительность такого эксперимента (в трубах с повторной циркуляцией воздуха), как правило, весьма мала вследствие общего задымления всего аэродинамического тракта.

История

Первые в мире аэродинамические трубы были построены 1871 году членом Совета Королевского авиационного общества Великобритании Фрэнсисом Гербертом Уэнхемом (Francis Herbert Wenham) и русским военным инженером В. А. Пашкевичем[2][3]. Уэнхем использовал свою аэродинамическую трубу для исследований несущих свойств крыла[4], тогда как труба Пашкевича предназначалась для определения аэродинамических характеристик артиллерийских снарядов[3].

В 1897 году К. Э. Циолковский построил прототип аэродинамической трубы собственной конструкции, использовав поток воздуха на выходе из центробежного вентилятора, и впервые в России применил этот агрегат для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет) воздушным потоком.

Под руководством Н. Е. Жуковского при механическом кабинете Московского университета в 1902 году была сооружена аэродинамическая труба, в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/с.

Первая аэродинамическая труба разомкнутой схемы была создана Т.Стантоном в Национальной физической лаборатории в Лондоне в 1903 году., вторая — Н. Е. Жуковским в Москве в 1906 году.

Первая замкнутая аэродинамическая труба построена в 1909 году в Гёттингене Людвигом Прандтлем, вторая — в 1910 году Т. Стантоном.

Первая аэродинамическая труба со свободной струей в рабочей части была построена Гюставом Эйфелем в Париже на Марсовом поле в 1909 году.

Дальнейшее развитие шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель).

В 1934 году в районе Берлина построена Большая аэродинамическая труба (Адлерсхоф) для аэродинамического моделирования. В трубе диаметром от 8,5 до 12 м размещались части самолётов и изучалось воздействие на них горизонтальных воздушных потоков. Особенностью данной аэродинамической трубы является бетонное сооружение «Zeiss-Dywidag» с толщиной стенок всего 8 сантиметров. В настоящее время сохраняется как памятник промышленной архитектуры в составе Аэродинамического парка.

Впервые человек взлетел в вертикальной аэродинамической трубе в 1964 году на воздушной базе Райт-Патерсон, Огайо, США.

См. также

Примечания

  1. ↑ ЦАГИ — Экспериментальная база
  2. ↑ Энциклопедия «Авиация». — М.: Научное издательство «Большая Российская Энциклопедия», 1994. — 736 с.
  3. 1 2 Авиация в России. — М.: Машиностроение, 1983.
  4. Соболев Д. А. История самолётов. Начальный период.. — М.: РОССПЭН, 1995. — 343 с.

Литература

Ссылки

Что такое аэродинамика? | Живая наука

Аэродинамика — это изучение взаимодействия газов с движущимися телами. Поскольку газ, с которым мы сталкиваемся чаще всего, это воздух, аэродинамика в первую очередь связана с силами сопротивления и подъема, которые вызваны воздухом, проходящим над и вокруг твердых тел. Инженеры применяют принципы аэродинамики к проектам самых разных вещей, включая здания, мосты и даже футбольные мячи; однако первостепенное значение имеет аэродинамика самолетов и автомобилей.

Аэродинамика вступает в игру при изучении полета и науки о создании и эксплуатации самолета, которая называется аэронавтикой. Авиационные инженеры используют основы аэродинамики для проектирования самолетов, которые летают в атмосфере Земли.

Аэродинамическое сопротивление

Самая значительная аэродинамическая сила, которая распространяется практически на все, что движется в воздухе, — это сопротивление. По данным НАСА, сопротивление — это сила, которая препятствует движению самолета по воздуху.Перетаскивание создается в направлении движения воздуха, когда он сталкивается с твердым объектом. В большинстве случаев, например, в автомобилях и самолетах, сопротивление нежелательно, поскольку для его преодоления требуется сила. Однако, есть некоторые случаи, когда сопротивление полезно, например, с парашютами.

Чтобы описать величину сопротивления объекта, мы используем значение, называемое коэффициентом сопротивления (c d ). Это число зависит не только от формы объекта, но и от других факторов, таких как его скорость и шероховатость поверхности, плотность воздуха и то, является ли поток ламинарным (гладким) или турбулентным.Силы, которые влияют на сопротивление, включают давление воздуха на поверхность объекта, трение вдоль сторон объекта и относительно отрицательное давление или всасывание на задней части объекта. Например, c d для плоской пластины, движущейся лицом к лицу в воздухе, составляет около 1,3, лицевой куб — около 1, сфера — около 0,5 и форма капли составляет около 0,05. Коэффициент аэродинамического сопротивления для современных автомобилей составляет от 0,25 до 0,35, а для самолетов — от 0,01 до 0,03. Расчет c d может быть сложным.По этой причине его обычно определяют с помощью компьютерного моделирования или экспериментов в аэродинамической трубе.

Аэродинамика самолета

Чтобы преодолеть силы сопротивления, самолет должен создать тягу. Это достигается с помощью винта с приводом от двигателя или реактивного двигателя. Когда самолет находится в горизонтальном полете с постоянной скоростью, сила тяги достаточна для противодействия аэродинамическому сопротивлению.

Движущийся воздух также может создавать силы в направлении, отличном от потока.Сила, которая удерживает самолет от падения, называется подъемной силой. Лифт создается крылом самолета. Путь над изогнутой вершиной крыла длиннее пути вдоль плоского дна крыла. Это приводит к тому, что воздух движется быстрее, чем внизу. При прочих равных условиях более быстро движущийся воздух имеет более низкое давление, чем более медленно движущийся воздух, в соответствии с принципом Бернулли, заявленным Даниэлем Бернулли, одним из важнейших пионеров в области гидродинамики.Это различие заключается в том, что позволяет медленнее движущемуся воздуху давить на нижнюю часть крыла с большей силой, чем движущийся быстрее воздух давит на верхнюю часть крыла. В горизонтальном полете этой восходящей силы достаточно, чтобы нейтрализовать нисходящую силу, вызванную гравитацией.

Аэродинамические силы также используются для управления самолетом в полете. Когда братья Райт совершили свой первый полет в 1903 году, им нужен был способ управлять своим самолетом, чтобы подниматься, снижаться, наклоняться и поворачивать.Они разработали так называемое трехосевое управление для тангажа, крена и рыскания. Шаг (нос направлен вверх или вниз) контролируется лифтом («закрылки») на задней или задней кромке горизонтального стабилизатора в хвостовой части. Рулон (наклон влево или вправо) контролируется элеронами (также закрылками) на задних кромках крыльев возле кончиков. Зевок (нос направлен влево или вправо) контролируется рулем на задней кромке вертикального стабилизатора в хвостовой части. Эти элементы управления используют третий закон движения Ньютона, потому что они генерируют силу, отклоняя поток воздуха в направлении, противоположном желаемому движению.Эта сила также позволяет пилотажным самолетам летать вверх ногами.

Пилот может также использовать закрылки на внутренней части задней кромки крыла во время взлета и посадки. В нижнем положении закрылки увеличивают подъемную силу и сопротивление, позволяя самолету лететь медленнее, не останавливаясь. Некоторые большие самолеты также могут выдвигать рейки на передних или передних кромках крыльев, чтобы увеличить подъемную силу на низких скоростях.

Когда плавный воздушный поток над крылом самолета нарушается, и это уменьшает величину подъемной силы, может произойти остановка.Согласно Руководству по полету самолетов Федеральной авиационной администрации: «Это происходит, когда крыло превышает критический угол атаки. Это может происходить при любой скорости полета, в любом положении и при любой мощности». Как правило, большинство срывов происходит, когда самолет движется слишком медленно, а нос находится слишком высоко под углом вверх. Воздух больше не течет вдоль верхней поверхности, а вместо этого отрывается и образует турбулентные завихрения на крыле. Это приводит к тому, что самолет теряет подъемную силу и начинает падать, иногда довольно резко.

Еще одна вещь, которая может произойти в самолете, это вращение. В «Руководстве по полету на самолете» вращение определяется как «обострение с отягчающими обстоятельствами, которое приводит к так называемому« самовращению », когда самолет следует по пути штопора вниз». Это обычно происходит в медленном повороте, когда медленное внутреннее крыло глохнет, а внешнее крыло все еще создает подъемную силу. «Особенно на малой высоте успешное восстановление вращения может быть трудным, если не невозможным, на многих самолетах», — говорит Скот Кэмпбелл, докторант в области аэрокосмической техники в Университете Иллинойса в Урбана-Шампейн, и Дональд Таллер, помощник главного инструктора по полету. в Институте Авиации Университета Иллинойса, пишет «Аэродинамика вращения» для Канадской ассоциации владельцев и пилотов.Одной из причин этого является опасность попадания в плоскую закрутку, при которой оба крыла и все поверхности управления останавливаются, и самолет падает, как семя клена.

Когда жидкость движется быстрее, она имеет более низкое давление. Этот принцип объясняет подъемную силу, создаваемую крылом самолета. (Фото предоставлено NASA Quest.)

Аэродинамика автомобилей

Автомобили начали использовать аэродинамические формы кузова в начале своей истории. По мере того как двигатели становились все более мощными, а машины — быстрее, инженеры-автомобилисты поняли, что сопротивление ветра значительно снижает их скорость.Первыми автомобилями, которые приняли улучшенную аэродинамику или оптимизацию, были гоночные автомобили и те, кто пытался побить рекорд скорости на земле.

«Мечтатели, инженеры, гонщики и предприниматели были соблазнены потенциальными преимуществами аэродинамики», — пишет Пол Нидермейер, автор книги «Автомобильная история: иллюстрированная история автомобильной аэродинамики» на веб-сайте Curbside Classic. «Усилия, предпринятые для этого, позволили получить некоторые из самых замечательных автомобилей, когда-либо сделанных, даже если они бросали вызов эстетическим предположениям своего времени».«

Относительно аэродинамики гоночного автомобиля, д-р Джо Дэвид, профессор механического и аэрокосмического машиностроения, известный как« г-н Стоянка автомобилей «в Университете штата Северная Каролина, сказал:» Большая часть мощности, вырабатываемой гоночным двигателем, расходуется воздухом высокого давления, толкающим переднюю часть автомобиля, и воздухом низкого давления — частичным вакуумом — тянущим в автомобиль сзади. «

Однако сопротивление не может быть единственным соображением. Хотя подъем самолета желателен для самолета, он может быть опасен для автомобиля.Для обеспечения лучшего контроля рулевого управления и торможения автомобили спроектированы таким образом, чтобы ветер создавал нисходящую силу при увеличении их скорости. Однако увеличение этой нисходящей силы увеличивает сопротивление, что, в свою очередь, увеличивает расход топлива и ограничивает скорость, поэтому эти две силы должны быть тщательно сбалансированы.

Во многих классах гоночных автомобилей используются подвижные крылья, похожие на крылья, чтобы регулировать нисходящую силу воздуха на автомобиле. При настройке гоночного автомобиля необходимо также учитывать турбулентность, вызванную другими автомобилями на трассе.Это требует установки аэродинамических профилей на автомобиль, чтобы во время гонки создавалось большее нисходящее усилие, чем необходимо для квалификации, когда автомобиль находится на трассе сам по себе. Вот почему время прохождения круга во время квалификации обычно намного быстрее, чем во время гонки.

Многие из тех же аэродинамических принципов, которые используются в гонках, также применимы к обычным легковым и грузовым автомобилям. Автомобильные инженеры используют компьютерное моделирование и эксперименты в аэродинамической трубе с масштабными моделями и реальными транспортными средствами для точной настройки аэродинамики автомобилей, чтобы они генерировали оптимальную величину направленной вниз силы на передние и задние колеса с минимально возможным сопротивлением.

Дополнительные ресурсы

  • См. Галерею некоторых действительно крутых обтекаемых автомобилей в Иллюстрированной истории автомобильной аэродинамики Curbside Classic.
  • На веб-сайте Смитсоновского национального музея авиации и космонавтики есть мероприятия и мультимедийные проекты на тему «Как дела летят».
  • Измерьте коэффициент сопротивления вашего автомобиля в эксперименте на веб-сайте Instructables.
,

Аэродинамика | механика жидкости | Britannica

Аэродинамика , раздел физики, который занимается движением воздуха и других газообразных жидкостей, а также силами, действующими на тела, проходящие через такую ​​жидкость. Аэродинамика стремится, в частности, объяснить принципы полета самолетов, ракет и ракет. Он также занимается проектированием автомобилей, скоростных поездов и кораблей, а также строительством таких конструкций, как мосты и высотные здания, для определения их устойчивости к сильным ветрам.

Подробнее на эту тему

Самолет

: аэродинамика

Самолет, выполняющий прямолинейный и горизонтальный полет, имеет четыре силы, действующие на него. (В поворотах, прыжках в воду или в лазании, дополнительный …

Наблюдения за полетом птиц и снарядов вызвали спекуляции среди древних относительно вовлеченных сил и способа их взаимодействия.Они, однако, не имели реального знания о физических свойствах воздуха и не пытались систематически изучать эти свойства. Большинство их идей отражало убеждение, что воздух обеспечивает поддерживающую или побуждающую силу. Эти понятия были в значительной степени основаны на принципах гидростатики (изучение давления жидкостей) в том виде, в котором они были поняты. Таким образом, в ранние времена считалось, что движущая сила снаряда была связана с силами, действующими на основание из-за прекращения потока воздуха вокруг тела.Эта концепция воздуха как вспомогательной среды, а не противодействующей силы, сохранялась веками, хотя в 16-м веке было признано, что катапультирующее устройство передавало ему энергию движения снаряда.

Около конца 15-го века Леонардо да Винчи заметил, что воздух оказывает сопротивление движению твердого объекта, и приписал это сопротивление эффектам сжимаемости. Позднее Галилей установил факт сопротивления воздуха экспериментально и пришел к выводу, что сопротивление было пропорционально скорости проходящего через него объекта.В конце 17-го века Кристиан Гюйгенс и сэр Исаак Ньютон определили, что сопротивление воздуха движению тела было пропорционально квадрату скорости.

Работа Ньютона по установлению законов механики положила начало классическим теориям аэродинамики. Он считал, что давление, действующее на наклонную пластину, возникает в результате столкновения частиц на той стороне пластины, которая обращена к воздушному потоку. Его формулировка привела к тому, что давление, действующее на пластину, было пропорционально произведению плотности воздуха, площади пластины, квадрата скорости и квадрата синуса угла наклона.Это не смогло учесть влияние потока на верхнюю поверхность плиты, где существуют низкие давления и из которой производится большая часть подъема крыла. Идея воздуха как континуума с полем давления, простирающимся на большие расстояния от плиты, должна была появиться намного позже.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Различные открытия были сделаны в 18 и 19 веках, которые способствовали лучшему пониманию факторов, влияющих на движение твердых тел в воздухе.Например, отношение сопротивления к вязким свойствам жидкости частично было воспринято в начале 1800-х годов, и эксперименты британского физика Осборна Рейнольдса в 1880-х годах более четко представили значение вязких эффектов.

Современная аэродинамика появилась примерно в то время, когда братья Райт совершили свой первый мощный полет (1903). Спустя несколько лет после их исторического усилия, британский инженер Фредерик В. Ланчестер предложил теорию циркуляции подъема аэродинамического профиля бесконечного пролета и вихревую теорию подъема крыла конечного пролета.Немецкий физик Людвиг Прандтль, которого обычно считают отцом современной аэродинамики, пришел к тем же гипотезам, что и Ланчестер, и разработал математическую трактовку. Работа Прандтля, доработанная и расширенная последующими исследователями, легла в основу теории. Среди других, кто играл выдающуюся роль в развитии современной аэродинамики, был венгерский инженер Теодор фон Карман, чей вклад привел к значительным достижениям в таких областях, как теория турбулентности и сверхзвуковой полет.

Аэродинамическая Авиация

  • Image

    Опыт свободы

  • Image
  • Image

    Вводный полет Уроки и туры

  • Image

    рейсов, вылетающих ежедневно

  • Image

    Наградами инструкторов

  • Image

    Летайте на разных самолетах

  • Image

    Научись летать палкой и рулем

  • Image

    Получайте удовольствие от своей лицензии

  • Image

    Получите фактический IFR во время обучения

  • Image

    Коммерческий, Инструктор и ATP

  • Image

    Заработай частным, коммерческим или ATP AMEL

  • Image

    с веселой летной школой Калифорнии

  • Image

    Стать лучшим пилотом

  • Image

    Зачем ехать в Тахо или Мамонт?

  • Image

    Расширьте свой кругозор

  • Image

    Преимущество прекрасной погоды

  • .
    Вычислить аэродинамические силы и моменты, используя аэродинамические коэффициенты, динамическое давление, центр тяжести, центр давления и скорость

    Блок аэродинамических сил и моментов вычисляет аэродинамические силы и моменты относительно центра тяжести.

    Изменения меток портов блока аэродинамических сил и моментов основаны на система координат, выбранная из Входные оси , Force Оси и Момент осей Перечень.

    Алгоритмы

    Пусть α — угол атаки, а β — боковое скольжение.Вращение от тела к стабильности оси:

    Cs ← b = [cos (α) 0sin (α) 010-sin (α) 0cos (α)]

    можно комбинировать с вращением от осей устойчивости к ветру:

    Cw ← s = [cos (β) sin (β) 0-sin (β) cos (β) 0001]

    для получения чистого вращения от тела к осям ветра:

    Cw ← b = [cos (α) cos (β) sin (β ) sin (α) cos (β) −cos (α) sin (β) cos (β) −sin (α) sin (β) −sin (α) 0cos (α)]

    Коэффициенты момента имеют одинаковые обозначения в все системы. Коэффициенты силы нижеприведенный. Обратите внимание, что для компонентов сил осей устойчивости нет специальных символов.Однако оси устойчивости имеют два компонента, которые не отличаются от других Оси.

    FAw≡ [−D − C − L] = Cw ← b⋅ [XAYAZA] ≡Cw ← b⋅FAb

    Компоненты / оси x y z
    Ветер C D C 9009 C L
    Стабильность C Y C L
    Кузов C X C Y C Z (- C N )

    С учетом этих определений для учета стандартных определений D , C , Y (где Y = — C ) и L , сила коэффициенты в осях ветра умножаются на отрицательную единицу диаг. (-1, -1, -1).Коэффициенты сил в осях устойчивости умножить на диаг (-1, 1, -1). C N и C X , соответственно, нормальное и осевое коэффициенты силы ( C N = — C Z ).

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *